화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.2, 474-481, February, 2013
Solubility of carbon dioxide in ammonium-based ionic liquids: Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide
E-mail:
Solubility results of carbon dioxide (CO2) in two ammonium-based ionic liquids, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4,1,1,1][Tf2N]) and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N1,8,8,8][Tf2N]), are presented at pressures up to approximately 45 MPa and temperatures ranging from 303.15 K to 343.15 K. The solubility was determined by measuring bubble point pressures of mixtures of CO2 and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. Sharp increase of equilibrium pressure was observed at high CO2 compositions. The CO2 solubility in ionic liquids increased with the increase of the total length of alkyl chains attached to the ammonium cation of the ionic liquids. The experimental data for the CO2+ionic liquid systems were correlated using the Peng-Robinson equation of state.
  1. Sheldon R, Chem. Commun., 2399 (2001)
  2. Xu W, Angell CA, Science., 302, 422 (2003)
  3. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974 (2002)
  4. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
  5. Jeong SK, Kim DH, Baek IH, Lee SH, Korean Chem. Eng. Res., 46(3), 492 (2008)
  6. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739 (2009)
  7. Cho MH, Lee H, Kim H, Korean Chem. Eng. Res., 48(1), 1 (2010)
  8. Brenneke JF, Gurkan BE, J. Phys. Chem. Lett., 1, 3459 (2010)
  9. Shiflett MB, Niehaus AMS, Yokozeki A, J. Chem. Eng. Data, 55(11), 4785 (2010)
  10. Iarikov DD, Hacarlioglu P, Oyama ST, Chem. Eng. J., 166(1), 401 (2011)
  11. Shariati A, Peters CJ, J. Supercrit. Fluids, 30(2), 139 (2004)
  12. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355 (2004)
  13. Kroon MC, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters CJ, J. Chem. Eng. Data, 50(1), 173 (2005)
  14. Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800 (2006)
  15. Anderson JL, Dixon JK, Brennecke JF, Acc. Chem. Res., 40, 1208 (2007)
  16. Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
  17. Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728 (2008)
  18. Lim BH, Choe WH, Shim JJ, Ra CS, Tuma D, Lee H, Lee CS, Korean J. Chem. Eng., 26(4), 1130 (2009)
  19. Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 52(3), 258 (2010)
  20. Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147 (2011)
  21. Yim JH, Song HN, Yoo KP, Lim JS, J. Chem. Eng. Data, 56(4), 1197 (2011)
  22. Jin YR, Jung YH, Park SJ, Baek IH, Korean Chem. Eng. Res., 50(1), 35 (2012)
  23. D’Alessandro DM, Smit B, Long JR, Angew. Chem. Int. Ed., 49, 6058 (2010)
  24. Shiflett MB, Drew DW, Cantini RA, Yokozeki A, Energy Fuels., 24, 5781 (2010)
  25. Guide to the expression of uncertainty in measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995)
  26. Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data., 45, 851 (2000)
  27. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, 3rd Ed., Prentice-Hall, NJ, USA (1999)
  28. Valderrama JO, Rojas RE, Ind. Eng. Chem. Res., 48(14), 6890 (2009)
  29. Baltus RE, Culbertson BH, Dai S, Luo HM, DePaoli DW, J. Phys. Chem. B, 108(2), 721 (2004)