화학공학소재연구정보센터
Clean Technology, Vol.18, No.4, 410-418, December, 2012
SCR 시스템 내 암모니아 분사 균일도 개선을 위한 AIG 설계에 관한 해석적 연구
Computational Study on Design of the AIG for the Enhancement of Ammonia Injection in the SCR System
E-mail:
초록
선택적 촉매환원(selective catalytic reduction, SCR) 시스템에서 사용되는 환원제의 효용성을 극대화하기 위해 적용되는 암모니아주입관(ammonia injection gun, AIG) 성능은 유량의 분배, 공기분배다기관(air distribution manifold, ADM)의 배치 그리고 노즐의 배열 및 형상 등에 의해 영향을 받는다. 본 연구에서는 전산유체역학(computational fluid dynamics, CFD) 기법을 이용하여 AIG 성능의 지표가 되는 토출 유량 균일도를 통계적인 수치로 표현하여 관련된 설계인자들과 SCR 시스템의 성능 사이의 상관관계를 평가하고자 하였다. 관내 유동에서 일어나는 유체역학적인 현상의 영향으로 AIG에 대한 공급유량이 증가할 때 각 노즐에서의 토출 유량의 균일도는 감소하는 해석결과를 얻었으며 헤더로부터 가까울수록 분지관으로의 유량분 배율이 낮아짐과 동시에 헤더에 가까운 노즐일수록 토출유량이 적어지는 현상을 파악하였다. 각 분지관에 대해 유입 면적대비 노즐의 총 면적비가 0.5 미만일 때 토출 유량의 균일도와 분지관의 유량분배가 매우 균일해지는 것으로 파악되었다.
The performance of the ammonia injection gun (AIG) used for maximizing the utilization of reducing agent in the selective catalytic reduction (SCR) system is decided by several parameters such as the pattern of flow distribution, geometry of the air distribution manifold(ADM) and the array and geometry of nozzles. In the study, the uniformity of jet flows from the nozzles in AIG was analyzed statistically by using the computational fluid dynamics (CFD) method to evaluate the role of design parameters on the performance of the SCR system. The uniformity of jet flows from the nozzles is being deteriorated with increasing the supplying flow rate to the AIG. Distribution rates to each branch pipe become lower with decreasing distance to the header, and flow rates from nozzle are also reduced with decreasing distance to the header. The uniformity of jet flows from nozzles becomes stable significantly when the ratio of summative area of nozzles to each sectional area of the branch pipe is below 0.5.
  1. Park SM, Chang H, Zhao T, J. Korean Soc. Envrion. Eng., 35(5), 368 (2011)
  2. Ottaviani E, Jean E, Albert H, Amon B, Burkardt A, Buder M, SAE Int., “Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution,” 2009-01-0914 (2009)
  3. Chen A, Sparrow EM, Int. J. Heat Mass Transf., 52(5-6), 1573 (2009)
  4. Jones GF, Galliera JM, Proc. ASME Fluids Eng. Div., 247, 189 (1998)
  5. Kresovic U, Proc. ASME Heat Transfer Div., 372(4), 39 (2002)
  6. Ye HY, Kim KS, Lee KS, Cha WH, SAREK., 21(3), 176 (2009)
  7. Li M, Yan H, Zhou J, “Numerical Simulation and Optimization of Flow Field in the SCR denitrification System,” 2009 Inter. Coref. Energy and Environ. Technol., 415 (2009)
  8. Ferziger JH, Peric M, Computational Methods for Fluid Dynamics, 2nd ed., Springer, Berlin (1999)
  9. ANSYS, ANSYS FLUENT 14.0 Theory Guide, ANSYS inc. (2011)
  10. ANSYS, ANSYS FLUENT 14.0 User’s Guide, ANSYS inc., (2011)
  11. Patankar SV, Numerical Heat Transfer and Fluid Flow, Mc-Graw-Hill, Washington, 1 (1999)
  12. Seo MH, Chang H, PAAR., 8(3), 99 (2012)
  13. http://www.engineeringtoolbox.com/ammonia-d_971.html
  14. http://www.peacesoftware.de/einigewerte/nh3_e.html