화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.96, No.2, 373-383, 2012
Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase
The co-production of 3-hydroxypropionic acid (3HP) and 1,3-propanediol (PDO) from glycerol was studied using the resting cells of a recombinant Klebsiella pneumoniae J2B strain that overexpresses an aldehyde dehydrogenase (KGSADH). Active biomass was produced in a mineral salt medium containing yeast extract and glycerol under a range of aeration conditions, and shifted to potassium phosphate buffer containing glycerol for bioconversion. The microaerobic or anaerobic conditions were favorable for both the production of active biomass and subsequent bioconversion. At the flask level, the recombinant strain (2.0 g CDW/L) grown under microaerobic conditions produced 43.2 mM 3HP and 59.0 mM PDO from glycerol (117 mM) in 30 min with a cumulative yield of 0.87 (mol/mol). The fed-batch bioconversion, which was performed in a 1.5-L bioreactor with 1.0 g CDW/L at a constant pH 7.0 under anaerobic conditions, resulted in 125.6 mM 3HP and 209.5 mM PDO in 12 h with a cumulative overall productivity, yield, and maximum specific production rate of 27.9 mmol/L/h, 0.71 (mol/mol), and 128.5 mmol/g CDW/h, respectively. Lactate, succinate and 2,3-butanediol were the major by-products, whereas the production of acetate and ethanol was marginal. This is the first report of the simultaneous production of 3HP and PDO from glycerol using a resting cell system.