화학공학소재연구정보센터
Inorganic Chemistry, Vol.51, No.22, 12483-12492, 2012
Rational Design of Selective Organoruthenium Inhibitors of Protein Tyrosine Phosphatase 1B
Protein tyrosine phosphatases (PTPs) belong to a large family of important regulatory enzymes involved in vital mammalian signaling pathways. Selective inhibitors of PTPs are highly valuable from a therapeutic standpoint given their association with various pathological conditions. One such target is PTP-1B which has previously been linked to diabetes and cancer. However, developing a selective inhibitor against PTP-1B has proven to be daunting because the enzyme shares a high degree of structural homology with TC-PTP, an essential PTP involved in modulating immune functions. To address this challenge, a series of organoruthenium complexes was developed to bind at the PTP substrate-binding site while simultaneously target the peripheral structural space. By capitalizing on the potential difference in the structural environment proximal to the active site between different PTPs, selectivity toward PTP-1B over TC-PTP was improved, paving the way for organoruthenium complexes as selective PTP-1B metalloinhibitors.