International Journal of Heat and Mass Transfer, Vol.55, No.25-26, 7375-7384, 2012
Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid
An experimental study was carried out to understand the flow boiling heat transfer of water based CuO nanofluids in the evaporator of a thermosyphon loop under steady sub-atmospheric pressures. Experimental results show that both the heat transfer coefficient (HTC) and the critical heat flux (CHF) of flow boiling in the evaporator of the thermosyphon loop could be enhanced by substituting nanofluids for water. The operating pressure has apparent impact on the HTC enhancement of nanofluids. However, the operating pressure has negligible effect on the CHF enhancement. There exists an optimal mass concentration of nanoparticles corresponding to the best enhancement effect. Experimental results show that the CHF enhancement results mainly from the existing of the coating layer on the heated surface formed by the sediment of nanoparticles. However, the HTC enhancement results from the effects of both the existing of the coating layer and the change of thermophysical properties of the working fluid. (C) 2012 Elsevier Ltd. All rights reserved.