화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.74, No.9, 2220-2233, 1999
Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation, mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes
We prepared polyetherimide (PEI) hollow fiber membranes using polyvinylpyrrolidones (PVP) with different molecular weights (PVP 10,000, PVP 40,000, and PVP 1,300,000) as additives for oil/water separation. Asymmetric hollow fiber membranes were fabricated by wet phase inversion technique from 25 wt 4% or 30 wt % solids of 20 : 5 : 75 or 20 : 10 : 70 (weight ratio) PEI/PVP/N-metyl-2-pyrrolidone (NMP) solutions and a 95 : 5 NMP/water solution was used as bore fluid to eliminate resistance on the internal surface. Effects of PVP molecular weights on morphology, oil-surfactant-water separation characteristics, mechanical, and thermal properties of PEI/PVP hollow fiber membranes were investigated. It was found that an increase in PVP molecular weight and percentage in PEI/PVP dope solution resulted in the membrane morphology change from the finger-like structure to the spongy structure. Without sodium hypochlorite posttreatment, hollow fiber membranes with higher PVP molecular weights had a higher rejection but with a lower water flux. For oil-surfactant-water emulsion systems (1600 ppm surfactant of sodium dodecylbenzenesulfonate and 2500 ppm oil of n-decane), experimental results illustrated that the rejection rates for surfactant, total organic carbon, and oil mere 76.1 approximate to 79.8%, 91.0 approximate to 93.0%, and more than 99%, respectively. Based on the glass transition temperature values, PVP existed in hollow fiber membranes and resulted in the hydrophilicity of membranes. In addition, using NaOCl as a posttreatment agent for membranes showed a significant improvement in membrane permeability for PVP with a molecular weight of 1300 K, whereas the elongation at break of the treated hollow fiber membranes decreased significantly.