Journal of Chemical and Engineering Data, Vol.57, No.8, 2227-2235, 2012
Thermophysical Properties of Ammonium-Based Bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids: Volumetric and Transport Properties
Density, theological properties, and conductivity of a homologous series of ammonium-based ionic liquids N-alkyl-triethylammonium bis{(trifluoromethyl)sulfonyl}imide were studied at atmospheric pressure as a function of alkyl chain length on the cation, as well as of the temperature from (293.15 to 363.15) K. From these investigations, the effect of the cation structure was quantified on each studied properties, which demonstrated, as expected, a decrease of the density and conductivity, a contrario of an increase of the viscosity with the alkyl chain length on the ammonium cation. Furthermore, rheological properties were measured for both pure and water-saturated ionic liquids. The studied ionic liquids were found to be Newtonian and non-Arrhenius. Additionally, the effect of water content in the studied ionic liquids on their viscosity was investigated by adding water until they were saturated at 293.15 K. By comparing the viscosity of pure ionic liquids with the data measured in water-saturated samples, it appears that the presence dramatically the viscosity of ionic liquids by up to three times. An analysis of involved transport properties leads us to a classification of the studied ionic liquids in terms of their ionicity using the Walden plot, from which it is evident that they can be classified as "good" ionic liquids. Finally, from measured density data, different volumetric properties, that is, molar volumes and thermal expansion coefficients were determined as a function of temperature and of cationic structure. Based on these volumetric properties, an extension of Jacquemin's group contribution model has been then established and tested for alkylammonium-based ionic liquids within a relatively good uncertainty close to 0.1 %.