Journal of Applied Polymer Science, Vol.74, No.11, 2724-2736, 1999
Mechanical properties of a particle-strengthened polyurethane foam
Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* proportional to (rho*)(n), where n = 1.7. The modulus data are described well by a simple geometric model (based on the work of Gibson and Ashby) for a closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to explain the density dependence. The modulus of the foam was modified by addition of gas-atomized, spherical, aluminum powder. Additions of 30 and 50 wt % Al measurably increased the foam modulus, but without a change in the density dependence. However, there was no observable increase in modulus with 5 and 10 wt % additions of the metal powder. Strength was also increased at high loading fractions of powder. The increase in modulus and strength could be predicted by combining the Gibson-Ashby model, referred to above, with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.
Keywords:COMPOSITES