화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.40, 9791-9801, 2012
Advances in Understanding of Chemical Bonding: Inputs from Experimental and Theoretical Charge Density Analysis
The development of charge density analysis has undergone a major renaissance in the last two decades. In recent years, the characterization of bonding features associated with atoms in molecules and in crystals has been explored using high-resolution X-ray diffraction data (laboratory or synchrotron) complemented by high level ab initio theoretical calculations. The extraction of one electron topological properties, namely, electrostatic charges, dipole moment and higher moments, electrostatic potential, electric field gradients, in addition to evaluation of the local kinetic and potential energy densities, have contributed toward an understanding of the electron density distributions in molecular solids. New topological descriptors, namely, the source function (SF) and electron localization function (ELF) provide additional information as regards characterization of the topology of the electron density. In addition, delocalization indices have also been developed to account for bonding features pertinent to M-M bonds. The evaluation of these properties have contributed significantly toward the understanding of intra-and intermolecular bonding features in organic, inorganic, and biomolecules in the crystalline phase, with concomitant applications in the understanding of chemical reactivity and material/biological properties. In recent years, the focus has strongly shifted toward the understanding of structure-property relationships in organometallic complexes containing labile M-C bonds in the crystal structure with subsequent implications in catalysis. This perspective aims to highlight the major developments in electron density measurements in the past few years and provides pointers directed toward the potential use of this technique in future applications for an improved understanding of chemical bonding in systems that have been unexplored.