Journal of Physical Chemistry B, Vol.116, No.43, 12905-12914, 2012
Chloroperoxidase-Catalyzed Epoxidation of cis-beta-Methylstyrene: Distal Pocket Flexibility Tunes Catalytic Reactivity
Chloroperoxidase, the most versatile heme protein, has a hybrid active site pocket that shares structural features with peroxidases and cytochrome P450s. The simulation studies presented here show that the enzyme possesses a remarkable ability to efficiently utilize its hybrid structure, assuming structurally different peroxidase-like and P450-like distal pocket faces and thereby enhancing the inherent catalytic capability of the active center. We find that, during epoxidation of cis-beta-methylstyrene (CBMS), the native peroxidase-like aspect of the distal pocket is diminished as the polar Glu183 side chain is displaced away from the active center and the distal pocket takes on a more hydrophobic, P450-like, aspect. The P450-like distal pocket provides a significant enthalpic stabilization of similar to 4 kcal/mol of the 14 kcal/mol reaction barrier for gas-phase epoxidation of CMBS by an oxyferryl heme-thiolate species. This stabilization comes from breathing of the distal pocket. As until recently the active site of chloroperoxidase was postulated to be inflexible, these results suggest a new conceptual understanding of the enzyme's versatility: catalytic reactivity is tuned by flexibility of the distal pocket.