Journal of the American Chemical Society, Vol.134, No.34, 14056-14069, 2012
Base-Catalyzed Dehydration of 3-Substituted Benzene cis-1,2-Dihydrodiols: Stabilization of a Cyclohexadienide Anion Intermediate by Negative Aromatic Hyperconjugation
Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by values with rho = 3.2. Solvent isotope effects for the reactions are k(H2O)/k(D2O) = 1.2-1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a "carbanion-like" transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of similar to 10(11) s(-1), corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10(11)-10(12) s(-1). From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK(a) of 30.8 +/- 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic ("aromatic") ring current in 3,3-difluorocyclohexadienyl anion.