화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.45, 18514-18517, 2012
Amalgamation of Nucleosides and Amino Acids in Antibiotic Biosynthesis: Discovery of an L-Threonine:Uridine-5'-Aldehyde Transaldolase
The lipopeptidyl nucleoside antibiotics represented by A-90289, caprazamycin, and muraymycin are structurally highlighted by a nucleoside core that contains a nonproteinogenic beta-hydroxy-alpha-amino acid named 5'-C-glycyluridine (GlyU). Bioinformatic analysis of the biosynthetic gene clusters revealed a shared open reading frame encoding a protein with sequence similarity to serine hydroxymethyltransferases, resulting in the proposal that this shared enzyme catalyzes an aldol-type condensation with glycine and uridine-5'-aldehyde to furnish GlyU. Using LipK involved in A-90289 biosynthesis as a model, we now functionally assign and characterize the enzyme responsible for the C-C bond forming event during GlyU biosynthesis as an L-threonine:uridine-5'-aldehyde transaldolase. Biochemical analysis revealed this transformation is dependent upon pyridoxal-5'-phosphate, the enzyme has no activity with alternative amino acids, such as glycine or serine, as aldol donors, and acetaldehyde is a coproduct. Structural characterization of the enzyme product is consistent with stereochemical assignment as the threo diastereomer (5'S,6'S)-GlyU. Thus this enzyme orchestrates C-C bond breaking and formation with concomitant installation of two stereocenters to make a new L-alpha-amino acid with a nucleoside side chain.