화학공학소재연구정보센터
Langmuir, Vol.28, No.34, 12601-12608, 2012
Method for Simultaneousiy Improving the Thermal Stability and Mechanical Properties of Poly(lactic acid): Effect of High-Energy Electrons on the Morphological, Mechanical, and Thermal Properties of PLA/MMT Nanocomposites
Nanocomposites derived from poly(lactic acid) (PLA) and organically modified montmorillonite (oMMT) have been cross-linked by high-energy electrons in the presence of triallyl cyanurate (TAC). The morphology of untreated and cross-linked PLA/MMT nanocomposites was characterized by wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). This treatment can improve both the thermal stability and the glass-transition temperatures of the PLA nanocomposites (e.g., PLA-MMT-TAC 30kGy, 50kGy, and 70kGy) because of the formation of cross-linking structures in the nanocomposites that will considerably reduce the mobility of polymers. Interestingly, at relatively low irradiation doses (e.g., 30 and 50 kGy) a good balance between tensile strength and elongation at break for the PLA nanocomposites could be achieved. These mechanical properties are superior to those of pure PLA. Therefore, combining nanotechnology and electron beam cross-linking is a promising new method of simultaneously improving the mechanical properties (toughness and tensile strength) and thermal stability of PLA.