화학공학소재연구정보센터
Langmuir, Vol.28, No.37, 13157-13165, 2012
Competitive Adsorption of Thiolated Poly(ethylene glycol) and Alkane-Thiols on Gold Nanoparticles and Its Effect on Cluster Formation
The surface concentration and conformation of thiol-terminated poly(ethylene glycol) (PEG) on gold nanoparticles are studied before and after coadsorption of alkane-thiols. Thermogravimetric analysis (TGA) indicates alkane-thiol ligands will competitively adsorb on gold surfaces of nanoparticles and that the extent of PEG-thiol replacement depends on the specific length of the alkane-thiol molecule. The conformation of the polymer is also affected by the length and packing density of the alkane-thiol. Dynamic light scattering (DLS) shows that the hydrodynamic size of coated particles has an intermediate maximum for the adsorption of octane-thiol, which also forms the most densely packed alkane-thiol monolayers. These two factors greatly impact the formation of clusters by nanoparticle surfactants. Small angle X-ray scattering (SAXS) shows that the largest clusters are formed when particles have a low PEG-thiol surface concentration and an extended PEG conformation.