Langmuir, Vol.28, No.40, 14313-14322, 2012
Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces
Poly(4-benzoyl-p-xylylene-co-p-xylylene), a biologically compatible photoreactive polymer belonging to the parylene family, can be deposited using a chemical vapor deposition (CVD) polymerization process on a wide range of substrates. This study discovered that the solvent stability of poly(4-benzoyl-p-xylylene-co-p-xylylene) in acetone is significantly increased when exposed to approximately 365 nm of UV irradiation, because of the cross-linking of benzophenone side chains with adjacent molecules. This discovery makes the photodefinable polymer a powerful tool for use as a negative photoresist for surface microstructuring and biointerface engineering purposes. The polymer is extensively characterized using infrared reflection adsorption spectroscopy (IRRAS), scanning electron microscopy (SEM), and imaging ellipsometry. Furthermore, the vapor-based polymer coating process provides access to substrates with unconventional and complex three-dimensional (3D) geometries, as compared to conventional spin-coated resists that are limited to flat 2D assemblies. Moreover, this photoresist technology is seamlessly integrated with other functionalized parylenes including aldehyde-, acetylene-, and amine-functionalized parylenes to create unique surface microstructures that are chemically and topographically defined. The photopatteming and immobilization protocols described in this paper represent an approach that avoids contact between harmful substances (such as solvents and irradiations) and sensitive biomolecules. Finally, multiple biomolecules on planar substrates, as well as on unconventional 3D substrates (e.g., stents), are presented.