화학공학소재연구정보센터
Langmuir, Vol.28, No.47, 16401-16407, 2012
Encapsulation of Poly(3-hexylthiophene) J-Aggregate Nanofibers with an Amphiphilic Block Copolymer
Poly(3-hexylthiophene) (P3HT) nanofibers (NF) displaying J-aggregate exciton coupling behavior are encapsulated with the amphiphilic block copolymer (BCP), poly(3-hexyl-thiophene)-block-poly(ethylene-glycol), (PHT20-b-PEG(108)). Encapsulation results in the formation of hierarchical superstructures, and the BCP coating is expected to exert a mild chemical pressure on the periphery of the NFs. Photoluminescence from encapsulated NF superstructures show line shape distortions due to self-absorption of the 0-0 transition which is consistent with preservation of J-aggregate character (intrachain order). Detailed resonance Raman spectra of encapsulated BCP-NF structures show no discernible changes in the P3HT aggregation state, and overtone and combination bands involving the symmetric stretching C=C (similar to 1450 cm(-1)) and C-C (similar to 1380 cm(-1)) backbone modes are observed. These features permit quantitative estimates of vibrational mode-specific excited state structural displacements using a time-dependent Raman intensity analysis which is not possible from conventional vibronic analysis of optical lineshapes.