화학공학소재연구정보센터
Materials Research Bulletin, Vol.47, No.9, 2357-2363, 2012
Controlled synthesis and optical properties of BaFBr:Eu2+ crystals via ethanol/water solutions
BaFBr:Eu2+ crystals with different structures were successfully fabricated via a simple precipitation method using ethanol/water mixtures as solvents. The amount of ethanol in the solvent mixtures played a significant role in the formation of final products, enabling the well-controlled growth of the BaFBr crystals. A possible formation mechanism was proposed based on the results of controlled experiments. The phases and morphologies of the resulting samples were systematically investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED) and elementary analysis. The optical properties of the annealed BaFBr:Eu2+ nano-cuboids were investigated using photoluminescence (PL), photo-stimulated luminescence spectroscopy (PSL) and kinetic decays. Faster decay behaviors demonstrate that these BaFBr:Eu2+ phosphors are promising materials for applications in optical storage fields. Furthermore, it is envisaged that this environmentally benign method can be extended to prepare other fluoride halides. (C) 2012 Elsevier Ltd. All rights reserved.