Transport in Porous Media, Vol.96, No.1, 39-62, 2013
Numerical Simulation of Diagenetic Alteration and Its Effect on Residual Gas in Tight Gas Sandstones
In this study, we numerically cemented a segmented X-ray microtomography image of a sandstone to understand changes to pore space connectivity, capillary control on gas, and water distributions, and ultimately production behavior in tight gas sandstone reservoirs. Level set method-based progressive quasi-static algorithm (a state-of-the-art direct simulation of capillarity-dominated fluid displacement) was used to find the gas/water configurations during drainage and imbibition cycles. Further, we account for gas-water interfacial tension changes using 1D burial history model based on available geologic data. We have found the displacement simulation method robust, and that diagenetic changes impart a significantly larger effect on gas trapping compared with interfacial tension changes.