Macromolecules, Vol.45, No.24, 9751-9758, 2012
Poly(vinylphosphonate)s with Widely Tunable LCST: A Promising Alternative to Conventional Thermoresponsive Polymers
Novel statistic copolymers of dialkyl vinylphosphonates have been synthesized via rare earth metal-mediated group transfer polymerization using easily accessible tris(cyclopentadienyl)ytterbium. The copolymerization parameters have been determined by activity measurements showing the formation of almost perfectly random copolymers (r(1), r(2) similar to 1). Thus, the polymerization rate of vinylphosphonate GTP is mainly limited by the steric demand of growing polymer chain end. The obtained copolymers of diethyl vinylphosphonate and dimethyl or di-n-propyl vinylphosphonate show thermoresponsive properties, i.e., exhibit a tunable lower critical solution temperature following a coil-globule transition mechanism, with cloud points between 5 and 92 degrees C. Hereby, the LCST can be precisely adjusted by varying the comonomer composition and correlates linearly with the content of hydrophilic/hydrophobic comonomer. These thermoresponsive poly(vinylphosphonate)s, exhibiting a sharp and reversible phase transition, and minor environmental effects such as concentration and additives on their cloud point, are promising candidates in biomedical applications.