Polymer(Korea), Vol.37, No.1, 34-40, January, 2013
POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성
Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite
E-mail:
초록
아민 작용기를 가진 POSS에 toluene diisocyanate(TDI)와 caprolactam(CL)의 반응물을 반응시켜 POSS 기반의 하이브리드 충전제(POSS-(TDI+CL))를 합성하였고 이를 상업용 폴리아미드계 열가소성 탄성체인 PA-TPE에 블렌딩하여 PA-TPE/POSS-(TDI+CL) 복합체를 제조하였다. POSS계 충전제의 화학구조는 FTIR과 1H NMR을 사용하여 확인하였다. PA-TPE/POSS-(TDI+CL) 복합체는 충전제를 PA-TPE에 7 wt%까지 첨가하여 제조하였고 이들은 순수 PA-TPE와 변성되지 되지 않은 PA-TPE/octaphenyl POSS의 복합체보다 낮은 tension set 값을 보여 탄성회복력이 향상되었다. 또한 하이브리드 충전제의 함량이 증가함에 따라 인장강도와 모듈러스가 증가하였다. 결론적으로 하이브리드 충전제인 POSS-(TDI+CL)는 원래 PA-TPE의 탄성에 나쁜 영향을 미치지 않고도 기계적 물성을 향상시킬 수 있는 적절한 충전제라 볼 수 있다.
Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and 1H NMR. The composites, PA-TPE/POSS-(TDI+CL),
which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.
- Shelley JS, Mather PT, DeVries KL, Polymer, 42(13), 5849 (2001)
- Yang F, Ou Y, Yu Z, Polym. Sci., 69, 355 (1998)
- Kim KM, Polymer Science and Technology., 20, 131 (2009)
- Hybrid Plastics® Home page, http://www.hybridplastics.com/(November 9, 2011), Printable Documents, Products & Services
- Yoon KB, Lee DH, Polymer Science and Technology., 16, 833 (2005)
- Kim H, Korean Chem. Eng. Res., 49(4), 460 (2011)
- Lee KS, Choi MC, Kim SM, Chang YW, Elastomers and Composites., 45, 156 (2010)
- Kang JS, Seo HS, Rubber Technology., 5, 16 (2004)
- Zhang L, Lu DR, Tao K, Bai RK, Macromol. Rapid Commun., 30(12), 1015 (2009)
- Ricco L, Russo S, Monticelli O, Bordo A, Bellucci F, Polymer, 46(18), 6810 (2005)
- Guo H, Meador MAB, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M, Sprowl G, ACS Appl. Mater.Interfaces., 3, 546 (2011)
- Yadav SK, Mahapatra SS, Yoo HY, Cho JW, Nanoscale Res. Lett., 6, 122 (2011)
- Ullah A, Alongi J, Russo S, Polym. Bull., 67, 1169 (2010)
- Bertoldo M, Cappelli C, Catanorchi S, Liuzzo V, Bronco S, Macromolecules, 38(4), 1385 (2005)
- Ukielski R, Polymer, 41(5), 1893 (2000)
- Xu HY, Kuo SW, Lee JS, Chang FC, Macromolecules, 35(23), 8788 (2002)
- Auras RA, Harte B, Selke S, Hernandez R, Plastic Film and Sheeting., 19, 123 (2003)
- Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izak P, Jarmarova V, Kacirkova M, Clarizia G, Sep.Purif. Technol., 97, 73 (2012)
- Miller RL, “Crystallographic Data and Melting Points for Various Polymers”, in Polymer Handbook, 4rh ed., Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR, Editors, John Wiley & Sons, Hoboken, New Jersey, USA, VI/1-92 (1999)
- Lee A, Lichtenhan JD, Macromolecules, 31(15), 4970 (1998)
- Jin SR, Master's Thesis, Kumoh National Institute of Technology (2011)
- Fina A, Tabuani D, Frache A, Camino G, Polymer, 46(19), 7855 (2005)
- Liu HZ, Zheng SX, Macromol. Rapid Commun., 26(3), 196 (2005)
- Yang IK, Tsai PH, J. Polym. Sci. B: Polym. Phys., 43(18), 2557 (2005)
- Phillips SH, Haddad TS, Tomczak SJ, Curr. Opin. Solid St. M., 8, 21 (2004)
- Choi SJ, Yoon KH, Kim HS, Yoo SY, Kim YC, Polym.(Korea), 35(4), 356 (2011)