Polymer(Korea), Vol.37, No.1, 74-79, January, 2013
비닐리덴 플루오라이드와 헥사플루오르프로필렌 공중합체의 합성
Synthesis of Poly(vinylidene fluoride-co-hexafluoropropylene)
E-mail:
초록
Polyvinylidene fluoride(PVDF)와 다양한 조성을 갖는 P(VDF-co-HFP)를 개시제 diisopropyl peroxidicarbonate(DIPPDC)와 용매 R-113을 사용하는 용액중합방법을 통해 성공적으로 합성하였다. 공중합의 VDF와 hexafluoropropylene(HFP)의 반응성 비는 rVDF=2.06±0.03과 rHFP∼0으로 확인되었다. 이결과는 HFP의 자가 사슬성장이 거의 일어나지 않는다는 것을 의미한다. 고분자의 중량평균 분자량 및 분포도는 HFP 함량이 증가할수록 점차적으로 감소하는 경향성을 보였다. 고분자의 녹는점은 HFP 함량이 증가할수록 결정화를 방해하기 때문에 선형적으로 낮아지는 경향성을 나타내었다. 더욱이 높은 HFP 함량에서는 녹는점이 발견되지 않았다. 고분자의 유리전이 온도의 경우, HFP 함량이 증가할수록 고분자사슬의 유동성을 감소시켜 점차적으로 상승하였다.
Polyvinylidene fluoride (PVDF) and its copolymer with hexafluoropropylene (HFP) were successfully prepared from free radical solution polymerizations using diisopropyl peroxidicarbonate (DIPPDC) in the presence of 1,1,2-trichlorotrifluoroethane (R-113). The reactivity ratios of VDF and HFP were estimated as rVDF=2.06±0.03 and rHFP.0. This result indicates that HFP cannot undergo self propagation. The weight-average molecular weight and molecular weight distribution of copolymers were found to decrease with increasing HFP content. The melting temperature of copolymers linearly decreased with the increase of HFP content because of the introduction of HFP. Moreover, no melting peak was observed for the copolymers with high HFP content. The glass transition temperature of copolymers gradually increased with the increase of HFP content due to the restricted flexibility of the polymer chains.
- Ameduri B, Boutevin B, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications, Elsevier, Amsterdam (2004)
- Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V, Biomaterials., 23, 3487 (2002)
- Hougham G, Davidson T, Cassidy P, Johns K, Fluoropolymers, Kluvert, New York (1999)
- Scheirs J, J. Modern Fluoropolymer, Wiley, New York (1997)
- Feiring AE, Banks RE, Smart BE, Tatlow JC, Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, 15, 339 (1994)
- Bar-Cohen Y, Electoactive Polymer (EAP) Actuators as Artificial Muscles, SPIE, Bellingham, WA (2001)
- Wang TT, Herbert JM, Glass AM, Application of the Ferroelectric Polymers, Blackie, Chapman & Hall, New York (1988)
- Nalwa H, Ferroelectric Polymers, Marcel Dekker, New York (1995)
- Yang Y, Ramalingam S, Wu G, Hsu SL, Kleiner LW, Tang FW, Ding N, Hossainy S, Polymer, 49(7), 1926 (2008)
- Kang SJ, Bae I, Shin YJ, Park YJ, Huh J, Park SM, Kim HC, Park C, Nano Lett., 11, 138 (2011)
- Tai HY, Wang WX, Howdle SM, Macromolecules, 38(22), 9135 (2005)
- Ameduri B, Gelin MP, J. Fluorine Chem., 126, 577 (2005)
- Costa LI, Storti G, Morbidelli M, Ferro L, Scialdone O, Filardo G, Galia A, Macromolecules, 43(23), 9714 (2010)
- Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G, Solid State Ion., 166(3-4), 383 (2004)
- Kim JR, Choi SW, Jo SM, Lee WS, Kim BC, J. Electrochem. Soc., 152(2), A295 (2005)
- Tarascon JM, Gozdz AS, Schmutz CN, Shukoki F, Warren PC, Solid State Ionics., 49, 86 (1996)
- Ross GJ, Watts JF, Hill MP, Morrissey P, Polymer, 41(5), 1685 (2000)
- Gozdz AS, Schmutz CN, and J. M. Tarascon, U.S.Patent 5,296,318 (1994)
- Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
- Abusleme JA, Gavezotti P, U.S.Patent 5,569,728 (1995)
- Ahmed TS, DeSimone JM, Roberts GW, Macromolecules, 41(9), 3086 (2008)
- Ahmed TS, DeSimone JM, Roberts GW, Macromolecules, 39(1), 15 (2006)
- Dohany JE, U.S.Patent 4,360,652 (1982)
- Blais J, Grimaud E, U.S.Patent 4,025,709 (1977)
- Honn FJ, Hoyt JM, U.S.Patent 3,053,818 (1962)
- Barber LA, U.S.Patent 6,187,885 (2001)
- Dohany JE, U.S.Patent 3,781,265 (1973)
- Mabboux PY, Gleason KK, J. Fluorine Chem., 113, 27 (2002)
- Banks RE, Smart BE, Tatlow JC, Organofluorine Chemistry: Principles and Commercial Applications, Plenum, New York (1994)