화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.1, 121-126, January, 2013
4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구
Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior
E-mail:
초록
4,4'-Thiodibenzenethiol을 기반으로 이관능 에폭시 수지인 4,4'-thiodibenzenethiol diglycidyl ether를 직접합성법으로 합성하였다. 합성된 에폭시 수지가 광경화가 가능하도록 acrylic acid와 반응시켜 광경화형 고굴절 이관능 에폭시 아크릴레이트인 4,4'-thiodibenzenethiol diglycidyl ether diacrylate를 합성하였으며 1H NMR과 FTIR을 이용하여 화학구조를 확인하였다. 이관능 에폭시 아크릴레이트와 함께 반응성 희석제인 2-phenoxythiol ethyl acrylate를 5, 10, 15, 20, 30 wt% 희석하여 점도와 굴절률과의 상관관계를 확인하였으며 광경화 후 경화필름의 굴절률 변화를 고찰 하였다. 반응성 희석제의 농도가 증가함에 따라 경화물의 경화도가 낮아졌으며, 경화도가 클수록 경화 후 굴절률은 높아지는 경향을 확인하였다.
UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by 1H NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.
  1. Shobha HK, Johnson H, Sankarapandian M, Kim YS, Rangarajan P, Baird DG, McGrath JE, J. Polym. Sci. A: Polym. Chem., 39(17), 2904 (2001)
  2. Groh W, Zimmermann A, Macromolecules., 24, 6660 (1991)
  3. Nebioglu A, Leon JA, Khudyakov IV, Ind. Eng. Chem. Res., 47(7), 2155 (2008)
  4. Amey DS, Wood TE, U.S. Patent 6,432,526 B1 (2002)
  5. Wen J, Wilkes GL, Chem. Mater., 8, 1667 (1996)
  6. Decker C, Viet TNT, Decker D, Weber-Koehl E, Polymer, 42(13), 5531 (2001)
  7. Otsubo Y, Amari T, Watanabe K, J. Appl. Polym. Sci., 29, 4071 (1984)
  8. Matynia T, Kutyla R, Bukat K, Pienkowska B, J. Appl. Polym. Sci., 55(11), 1583 (1995)
  9. Bajpai M, Shukla V, Kumar A, Prog. Org. Coat., 44, 271 (2002)
  10. Maruno T, Ishibashi S, Nakamura K, J. Polym. Sci. A: Polym. Chem., 32(16), 3211 (1994)
  11. Ali MA, Khan MA, Ali KM, J. Appl. Polym. Sci., 60(6), 879 (1996)
  12. Yoo JW, Kim DS, Polym.(Korea), 23(3), 376 (1999)
  13. Kim HD, Lee DJ, Choi JH, Park CC, Polym.(Korea), 18(1), 38 (1994)
  14. Lee KH, Kim BK, Korea Polym. J., 4(1), 1 (1996)
  15. Kim HD, Kang SG, Ha CS, J. Appl. Polym. Sci., 46, 1339 (1992)
  16. Bongiovanni R, Malucelli G, Sangermano M, Priola A, Prog. Org. Coat., 36, 70 (1999)
  17. Shi WF, Ranby B, J. Appl. Polym. Sci., 51(6), 1129 (1994)
  18. Williams TR, J. Appl. Polym. Sci., 31, 1293 (1986)
  19. Kumar A, Gupta SK, Reaction Engineering of Step Growth Polymerization, Plenum, New York (1987)
  20. Dizman C, Ates S, Torun L, Yagci Y, Beilstein J. Org.Chem., doi:10.3762/bjoc.6.56, 6(56) (2010)