- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.37, No.1, 121-126, January, 2013
4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구
Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior
E-mail:
초록
4,4'-Thiodibenzenethiol을 기반으로 이관능 에폭시 수지인 4,4'-thiodibenzenethiol diglycidyl ether를 직접합성법으로 합성하였다. 합성된 에폭시 수지가 광경화가 가능하도록 acrylic acid와 반응시켜 광경화형 고굴절 이관능 에폭시 아크릴레이트인 4,4'-thiodibenzenethiol diglycidyl ether diacrylate를 합성하였으며 1H NMR과 FTIR을 이용하여 화학구조를 확인하였다. 이관능 에폭시 아크릴레이트와 함께 반응성 희석제인 2-phenoxythiol ethyl acrylate를 5, 10, 15, 20, 30 wt% 희석하여 점도와 굴절률과의 상관관계를 확인하였으며 광경화 후 경화필름의 굴절률 변화를 고찰 하였다. 반응성 희석제의 농도가 증가함에 따라 경화물의 경화도가 낮아졌으며, 경화도가 클수록 경화 후 굴절률은 높아지는 경향을 확인하였다.
UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by 1H NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.
Keywords:epoxy acrylate;4,4'-thiodibenzenethiol diglycidyl ether;Taffy process;UV-curing;refractive index;degree of cure.
- Shobha HK, Johnson H, Sankarapandian M, Kim YS, Rangarajan P, Baird DG, McGrath JE, J. Polym. Sci. A: Polym. Chem., 39(17), 2904 (2001)
- Groh W, Zimmermann A, Macromolecules., 24, 6660 (1991)
- Nebioglu A, Leon JA, Khudyakov IV, Ind. Eng. Chem. Res., 47(7), 2155 (2008)
- Amey DS, Wood TE, U.S. Patent 6,432,526 B1 (2002)
- Wen J, Wilkes GL, Chem. Mater., 8, 1667 (1996)
- Decker C, Viet TNT, Decker D, Weber-Koehl E, Polymer, 42(13), 5531 (2001)
- Otsubo Y, Amari T, Watanabe K, J. Appl. Polym. Sci., 29, 4071 (1984)
- Matynia T, Kutyla R, Bukat K, Pienkowska B, J. Appl. Polym. Sci., 55(11), 1583 (1995)
- Bajpai M, Shukla V, Kumar A, Prog. Org. Coat., 44, 271 (2002)
- Maruno T, Ishibashi S, Nakamura K, J. Polym. Sci. A: Polym. Chem., 32(16), 3211 (1994)
- Ali MA, Khan MA, Ali KM, J. Appl. Polym. Sci., 60(6), 879 (1996)
- Yoo JW, Kim DS, Polym.(Korea), 23(3), 376 (1999)
- Kim HD, Lee DJ, Choi JH, Park CC, Polym.(Korea), 18(1), 38 (1994)
- Lee KH, Kim BK, Korea Polym. J., 4(1), 1 (1996)
- Kim HD, Kang SG, Ha CS, J. Appl. Polym. Sci., 46, 1339 (1992)
- Bongiovanni R, Malucelli G, Sangermano M, Priola A, Prog. Org. Coat., 36, 70 (1999)
- Shi WF, Ranby B, J. Appl. Polym. Sci., 51(6), 1129 (1994)
- Williams TR, J. Appl. Polym. Sci., 31, 1293 (1986)
- Kumar A, Gupta SK, Reaction Engineering of Step Growth Polymerization, Plenum, New York (1987)
- Dizman C, Ates S, Torun L, Yagci Y, Beilstein J. Org.Chem., doi:10.3762/bjoc.6.56, 6(56) (2010)