Korean Chemical Engineering Research, Vol.51, No.1, 10-24, February, 2013
공정개발을 위한 다규모 모사에서의 연구현황
State-of-arts in Multiscale Simulation for Process Development
E-mail:
초록
본 논문은 과학 및 공학에서 폭넓게 연구되고 있는 다규모 모사(multiscale simulation; MSS)에 대하여 간단하게 그 현황을 살펴본 후, 이러한 MSS를 공정개발에 효과적으로 적용하기 위하여 공정개발을 위한 PD-MSS (MSS for process development)를 제시한다. 4단계로 제시된 PD-MSS는 PLS(공정수준모사), FLS(유체수준모사), mFLS(미세유체수준모사), 그리고 MLS(분자수준모사) 로 구성된다. 각 규모의 특징과 주요 기법들, 그리고 이들 4개 규모 간 연관성을 설명한다. PD-MSS의 예로서 흡수탑, 유동층 반응기, 그리고 흡착공정의 모사가 소개된다. 성공적인 다규모 모사(MSS)를 위하여 다규모적 화학공학 문제들에 대한 이해, 각 규모 및 규모간 자연현상을 표현할 수 있는 모델 개발, 수학적 모델을 전산상에서 구현할 수 있도록 하는 소프트웨어 개발, 그리고 계산을 수행하는 하드웨어에서의 조화로운 발전이 필요하다. 다규모 모사는 모사결과의 정확도(accuracy), 컴퓨터의 계산능력(computation capacity), 그리고 효율성 (efficiency)을 제한 조건으로 주어진 문제에 접근해야 할 것이다. 거시적 규모와 미시적 규모는 상대적으로 잘 정리되어 있지만, 이들 사이인 중간규모(mesoscale) 에서의 모델은 병목현상을 보이고 있다. 따라서 물리적 현상을 신뢰성 있고, 정확하게 예측하기 위하여 중간규모에 대한 많은 연구가 요구된다. 시작단계에 불과한 PD-MSS는 공정개발에 있어서 시간과 비용을 절감할 수 있는 지속 가능한 기술로서 자리잡게 될 것이다.
The state-of-arts of multiscale simulation (MSS) in science and engineering is briefly presented and MSS for process development (PD-MSS) is proposed to effectively apply the MSS to the process development. The four-level PD-MSS is composed of PLS (process-level simulation), FLS (fluid-level simulation), mFLS (microfluid-level simulation) and MLS (molecular-level simulation). Characteristics and methods of each level, as well as connectivity between the four levels are described. For example in PD-MSS, absorption column, fluidized-bed reactor, and adsorption process are introduced. For successful MSS, it is necessary to understand the multiscale nature in chemical engineering problems, to develop models representing physical phenomena at each scale and between scales, to develop softwares implementing mathematical models on computer, and to have strong computing facilities. MSS should be performed within
acceptable accuracy of simulation results, available computation capacity, and reasonable efficiency of calculation. Macroscopic and microscopic scale simulations have been developed relatively well but mesoscale simulation shows a bottleneck in MSS. Therefore, advances on mesoscale models and simulation tools are required to accurately and reliably predict physical phenomena. PD-MSS will find its way into a sustainable technology being able to shorten the duration and to reduce the cost for process development.
Keywords:Multiscale Simulation;Process Development;Process-Level Simulation (PLS);Fluid-Level Simulation (FLS);Microfluid-Level Simulation (mFLS);Molecular-Level Simulation (MLS)
- Braatz RD, “Multiscale Simulation in Science and Engineering," AIChE annual meeting, November 8-13, Nashville, TN, USA (2009)
- E, W., Principles of Multiscale Modeling, 1st ed., Cambridge University Press, New York, NY (2011)
- Jaworski Z, Zakrzewska B, Comput. Chem. Eng., 35(3), 434 (2011)
- Fermeglia M, Pricl S, Comput. Chem. Eng., 33(10), 1701 (2009)
- Delgado-Buscalioni R, Coveney PV, Riley GD, Ford RW, Phil. Trans. R.Soc. A., 363(1833), 1975 (2005)
- Raimondeau S, Vlachos DG, Chem. Eng. J., 90(1-2), 3 (2002)
- Kim W, Yun C, Jung KT, Park S, Kim SH, Comput.Chem. Eng., 39, 96 (2012)
- Ideker T, Galitski T, Hood L, Annu. Rev. Genomics Hum. Genet., 2, 343 (2001)
- Vlachos DG, in Guy BM (Ed.), A review of multiscale analysis:examples from systems biology, materials engineering, and other fluid-surface interacting systems, Academic Press, 1 (2005)
- Vlachos DG, AIChE J., 58(5), 1314 (2012)
- Son HJ, Lim YI, Yoo JS, Korean Chem. Eng. Res., 46(6), 1087 (2008)
- Lee U, Kim K, Oh M, Korean Chem. Eng. Res., 45(6), 582 (2007)
- Braatz RD, Alkire RC, Rusli E, Drews TO, Chem. Eng. Sci., 59(22-23), 5623 (2004)
- Steinhauser MO, Computational Multiscale Modeling of Solids and Fluids, 1st ed., Springer, Berlin, Germany (2008)
- Nguyen TDB, “Multiscale Simulation Approach to Process Development: Computational Fluid Dynamics (CFD) and Process Modeling,” Ph.D. Dissertation, Hankyong National University, Anseong, Korea (2011)
- ASPEN Technology, “ASPEN Plus,” http://www.aspentech.com/.
- PSE-Enterprise, “gProms,” http://www.psenterprise.com/gproms/.
- Ge W, Wang W, Yang N, Li J, Kwauk M, et al., Chem. Eng. Sci., 66(19), 4426 (2011)
- Lim YI, “ESCAPE 12 (12th European Symposium on Computer-Aided Process Engineering),” KOSEN conference report, CR02-36 (2002)
- Perkins J, Comput. Chem. Eng., 26(2), 283 (2002)
- Stephanopoulos G, Reklaitis GV, Chem. Eng. Sci., 66(19), 4272 (2011)
- Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P, Bioinformatics., 23(17), 2348 (2007)
- NIST, “NIST Chemistry WebBook,” http://webbook.nist.gov/chemistry/.
- ChERIC, “KDB (Korea thermodynamial properties data bank),” http://www.cheric.org/.
- Gani R, Hytoft G, Jaksland C, Jensen AK, Comput. Chem. Eng., 21(10), 1135 (1997)
- Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2nd ed., John Wiley & Sons, New York, NY (2007)
- ANSYS, “ANSYS Fluent User’s Guide,” ANSYS, Inc., Canonsburg, Pennsylvania, USA (2012)
- Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, 1st ed., Academic Press (1994)
- Gidaspow D, Jung JW, Singh RK, Powder Technol., 148(2-3), 123 (2004)
- Nguyen TDB, Seo MW, Lim YI, Song BH, Kim SD, Comput. Chem. Eng., 36, 48 (2012)
- Geng YM, Che DF, Chem. Eng. Sci., 66(2), 207 (2011)
- Bertrand F, Leclaire LA, Levecque G, Chem. Eng. Sci., 60(8-9), 2517 (2005)
- Andrews MJ, Orourke PJ, Int. J. Multiph. Flow, 22(2), 379 (1996)
- Snider DM, Clark SM, O'Rourke PJ, Chem. Eng. Sci., 66(6), 1285 (2011)
- Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30(1), 329 (1998)
- Begum R, Basit MA, Europ. J. Sci. Res., 22(2), 216 (2008)
- Nourgaliev RR, Dinh TN, Theofanous TG, Joseph D, Int. J. Multiphase Flow., 29(1), 117 (2003)
- Verma N, Salem K, Mewes D, Chem. Eng. Sci., 62(14), 3685 (2007)
- Aidun CK, Clausen JR, Annu. Rev. Fluid Mech., 42(1), 439 (2010)
- Succi S, Filippova O, Smith G, Kaxiras E, Comput. Sci. Eng., 3(6), 26 (2001)
- Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V, J. Mol. Liq., 134(1-3), 71 (2007)
- Arya G, Chang HC, Maginn EJ, J. Chem. Phys., 115(17), 8112 (2001)
- Sun H, J. Phys. Chem. B, 102(38), 7338 (1998)
- Lim YI, Bhatia SK, Nguyen TX, Nicholson D, J. Membr. Sci., 355(1-2), 186 (2010)
- Lim YI, Bhatia SK, J. Membr. Sci., 369(1-2), 319 (2011)
- Bezzo F, Macchietto S, Pantelides CC, Comput. Chem. Eng., 24(2-7), 653 (2000)
- Bezzo F, Macchietto S, Pantelides CC, Comput. Chem. Eng., 28(4), 501 (2004)
- Balaji S, Du J, White CM, Ydstie BE, Powder Technol., 199(1), 23 (2010)
- Mota JPB, Esteves IAAC, Rostam-Abadi M, Comput. Chem. Eng., 28(11), 2421 (2004)
- O’Connell ST, Thompson PA, Phys. Rev. E., 52(6), R5792 (1995)
- Yasuda S, Yamamoto R, Phys. Fluids., 20, 113101 (2008)
- Son HJ, “Adsorption Isotherms and Diffusivity Predictions on Adsorbent Using Molecular Simulation,” MS thesis, Hankyong National University, Anseong, Korea (2009)
- Son HJ, Lim YI, Chin. J. Chem. Eng., 16(1), 108 (2008)
- Wang FY, Zhu ZH, Massarotto P, Rudolph V, AIChE J., 58(2), 364 (2012)
- Raynal L, Royon-Lebeaud A, Chem. Eng. Sci., 62(24), 7196 (2007)
- Guiochon G, J. Chromatogr.A., 965(1-2), 129 (2002)
- Rajendran A, Paredes G, Mazzotti M, J.Chromatogr. A., 1216(4), 709 (2009)
- Lim YI, Lee J, Bhatia SK, Lim YS, Han C, Ind. Eng. Chem. Res., 49(7), 3316 (2010)
- UOP, “Parex: Aromatics,” http://www.uop.com.
- Pais LS, Loureiro JM, Rodrigues AE, AIChE J., 44(3), 561 (1998)
- Lim YI, Jorgensen SB, Ind. Eng. Chem. Res., 46(11), 3684 (2007)
- Sutanto PS, Lim YI, Lee J, Sep. Purif. Technol., 96, 168 (2012)
- Bentley J, Kawajiri Y, AlChE J., DOI: 10.1002/aic.13856 (2012)
- Coasne B, Fourkas JT, J. Phys. Chem. C., 115(31), 15471 (2011)
- Lim Y, Lee A, Korean Chem. Eng. Res., 45(1), 1 (2007)
- Lim YI, Chem. Eng. Commun., 195(8), 1011 (2008)
- Ernest MV, Whitley RD, Ma ZD, Wang NH, Ind. Eng. Chem. Res., 36(1), 212 (1997)
- Verma N, Mewes D, Comput.Math. Appl., 58(5), 1003 (2009)
- Li J, “Real Time Simulation of Chemical Processes: Dream or reality,” ECCE (European conference on chemical engineering), September 25-29, Berlin, Germany (2011)