Applied Chemistry for Engineering, Vol.24, No.1, 44-48, February, 2013
텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구
Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies
E-mail:
초록
본 연구에서는 낮은 열전이 온도를 가지는 텅스텐이 도핑된 이산화바나듐(W-VO2)을 제조하였다. 텅스텐이 도핑된 이산화바나듐은 바나딜설페이트(VOSO4)와 중탄산암모늄((NH4) HCO3)을 전구체로 열분해 과정을 통해 제조하였다. 이에 대한 입자의 구조 및 열전이 특성을 FE-SEM, EDS, XRD, XPS, DSC 분석을 통해 조사하였다. 그 결과 텅스텐이 도핑된 이산화바나듐 입자의 형상은 판상형태로 텅스텐이 이산화바나듐 결정에 잘 도핑 되어 있음을 확인 하였다. 텅스텐이 도핑된 이산화바나듐의 결정 구조는 단사정으로 60 nm의 크기를 가지고 있었으며, 화학적인 조성 및 표면 상태는 이산화바나듐과 유사하였다. 또한, 텅스텐이 도핑된 이산화바나듐의 상전이 온도는 38.5 ℃로 순수한 이산화바나듐의 상전이 온도인 67.7 ℃에 비해 29.2 ℃ 낮게 나타났으며, 가역 상전이 안정성이 우수하였다.
In this work, we have prepared tungsten doped vanadium oxide (W-VO2) particles with a low phase transition temperature. W-VO2 particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized W-VO2 particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared W-VO2 showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of VO2. W-VO2 nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of VO2. In addition, the phase transition temperature of W-VO2 was 38.5 ℃, which was approximately 29.2 ℃ lower than that of pure VO2 (67.7℃), indicating that the prepared sample had a good reversible thermochromic stability.
- Morin FJ, Phys. Rev. Lett., 3, 34 (1959)
- Griffiths CH, Eastwood HK, J. Appl. Phys., 45, 2201 (1974)
- Muraoka Y, Ueda Y, Hiroi Z, J. Phys. Chem. Solids., 63, 965 (2002)
- Goodenough JB, J. Solid State Chem., 3, 490 (1971)
- Zylbersztejn A, Mott NF, Phys. Rev. B., 11, 4383 (1975)
- Marutama T, Ikuta Y, J. Mater. Sci., 28, 5073 (1993)
- Micocci G, Serra A, Tepore A, Capone S, Rella R, Siciliano P, J. Vac. Sci. Technol. A, 15(1), 34 (1997)
- Mlyuka NR, Niklasson GA, Granqvist CG, Sol. Energy Mater. Sol. Cells, 93(9), 1685 (2009)
- Jin P, Xu G, Tazawa M, Yoshimura K, Appl. Phys. A-Mater., 77, 455 (2003)
- Batista C, Ribeiro RM, Teixeira V, Nanoscale. Res. Lett., 6, 301 (2011)
- Ji SD, Zhang F, Jin P, Sol. Energy Mater. Sol. Cells, 95(12), 3520 (2011)
- Burkhardt W, Christmann T, Meyer BK, Niessner W, Schalch D, Scharmann A, Thin Solid Films, 345(2), 229 (1999)
- Hanlon TJ, Coath JA, Richardson MA, Thin Solid Films, 436(2), 269 (2003)
- Rogers K, Powder Diffr., 8, 240 (1993)
- Shi JQ, Zhou SX, You B, Wu LM, Sol. Energy Mater. Sol. Cells, 91(19), 1856 (2007)
- Pan A, Zhang JG, Nie Z, Cao G, Arey BW, Li G, Liang SQ, Liu J, J. Mater. Chem., 20, 9193 (2010)
- Silversmit G, Depla D, Poelman H, Marin GB, DeGryse R, J. Electron Spectrosc. Rel. Phenom., 135, 167 (2004)
- Nachr SP, Goettingen GW, Math.-Phys. Kl., 2, 98 (1918)
- Yan JZ, Zhang Y, Huang WX, Tu MJ, Thin Solid Films, 516(23), 8554 (2008)
- Ye J, Zhou L, Liu F, Qi J, Gong W, Lin Y, Ning G, J.Alloy. Compd., 504, 503 (2010)
- Tang C, Georgopoulos P, Fine ME, Cohen JB, Phys.Rev. B., 31, 1000 (1985)
- Pan M, Zhong HM, Wang SW, Liu J, Li ZF, Chen XS, Lu W, J. Cryst. Growth, 265(1-2), 121 (2004)
- Begishev AR, Galiev GB, Ignat’ev AS, Mokerov VG, Poshin VG, Sov. Phys. Solid State., 20, 951 (1978)
- Griffiths CH, Eastwood HK, J. Appl. Phys., 45, 2201 (1974)
- Sun Y, Jiang S, Bi W, Long R, Tan X, Wu C, Wei S, Xie Y, Nanoscale., 3, 4394 (2011)