화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.1, 44-48, February, 2013
텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구
Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies
E-mail:
초록
본 연구에서는 낮은 열전이 온도를 가지는 텅스텐이 도핑된 이산화바나듐(W-VO2)을 제조하였다. 텅스텐이 도핑된 이산화바나듐은 바나딜설페이트(VOSO4)와 중탄산암모늄((NH4) HCO3)을 전구체로 열분해 과정을 통해 제조하였다. 이에 대한 입자의 구조 및 열전이 특성을 FE-SEM, EDS, XRD, XPS, DSC 분석을 통해 조사하였다. 그 결과 텅스텐이 도핑된 이산화바나듐 입자의 형상은 판상형태로 텅스텐이 이산화바나듐 결정에 잘 도핑 되어 있음을 확인 하였다. 텅스텐이 도핑된 이산화바나듐의 결정 구조는 단사정으로 60 nm의 크기를 가지고 있었으며, 화학적인 조성 및 표면 상태는 이산화바나듐과 유사하였다. 또한, 텅스텐이 도핑된 이산화바나듐의 상전이 온도는 38.5 ℃로 순수한 이산화바나듐의 상전이 온도인 67.7 ℃에 비해 29.2 ℃ 낮게 나타났으며, 가역 상전이 안정성이 우수하였다.
In this work, we have prepared tungsten doped vanadium oxide (W-VO2) particles with a low phase transition temperature. W-VO2 particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized W-VO2 particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared W-VO2 showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of VO2. W-VO2 nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of VO2. In addition, the phase transition temperature of W-VO2 was 38.5 ℃, which was approximately 29.2 ℃ lower than that of pure VO2 (67.7℃), indicating that the prepared sample had a good reversible thermochromic stability.
  1. Morin FJ, Phys. Rev. Lett., 3, 34 (1959)
  2. Griffiths CH, Eastwood HK, J. Appl. Phys., 45, 2201 (1974)
  3. Muraoka Y, Ueda Y, Hiroi Z, J. Phys. Chem. Solids., 63, 965 (2002)
  4. Goodenough JB, J. Solid State Chem., 3, 490 (1971)
  5. Zylbersztejn A, Mott NF, Phys. Rev. B., 11, 4383 (1975)
  6. Marutama T, Ikuta Y, J. Mater. Sci., 28, 5073 (1993)
  7. Micocci G, Serra A, Tepore A, Capone S, Rella R, Siciliano P, J. Vac. Sci. Technol. A, 15(1), 34 (1997)
  8. Mlyuka NR, Niklasson GA, Granqvist CG, Sol. Energy Mater. Sol. Cells, 93(9), 1685 (2009)
  9. Jin P, Xu G, Tazawa M, Yoshimura K, Appl. Phys. A-Mater., 77, 455 (2003)
  10. Batista C, Ribeiro RM, Teixeira V, Nanoscale. Res. Lett., 6, 301 (2011)
  11. Ji SD, Zhang F, Jin P, Sol. Energy Mater. Sol. Cells, 95(12), 3520 (2011)
  12. Burkhardt W, Christmann T, Meyer BK, Niessner W, Schalch D, Scharmann A, Thin Solid Films, 345(2), 229 (1999)
  13. Hanlon TJ, Coath JA, Richardson MA, Thin Solid Films, 436(2), 269 (2003)
  14. Rogers K, Powder Diffr., 8, 240 (1993)
  15. Shi JQ, Zhou SX, You B, Wu LM, Sol. Energy Mater. Sol. Cells, 91(19), 1856 (2007)
  16. Pan A, Zhang JG, Nie Z, Cao G, Arey BW, Li G, Liang SQ, Liu J, J. Mater. Chem., 20, 9193 (2010)
  17. Silversmit G, Depla D, Poelman H, Marin GB, DeGryse R, J. Electron Spectrosc. Rel. Phenom., 135, 167 (2004)
  18. Nachr SP, Goettingen GW, Math.-Phys. Kl., 2, 98 (1918)
  19. Yan JZ, Zhang Y, Huang WX, Tu MJ, Thin Solid Films, 516(23), 8554 (2008)
  20. Ye J, Zhou L, Liu F, Qi J, Gong W, Lin Y, Ning G, J.Alloy. Compd., 504, 503 (2010)
  21. Tang C, Georgopoulos P, Fine ME, Cohen JB, Phys.Rev. B., 31, 1000 (1985)
  22. Pan M, Zhong HM, Wang SW, Liu J, Li ZF, Chen XS, Lu W, J. Cryst. Growth, 265(1-2), 121 (2004)
  23. Begishev AR, Galiev GB, Ignat’ev AS, Mokerov VG, Poshin VG, Sov. Phys. Solid State., 20, 951 (1978)
  24. Griffiths CH, Eastwood HK, J. Appl. Phys., 45, 2201 (1974)
  25. Sun Y, Jiang S, Bi W, Long R, Tan X, Wu C, Wei S, Xie Y, Nanoscale., 3, 4394 (2011)