- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.25, No.1, 1-8, February, 2013
Microfluidic study on CNT dispersion during breakup of aqueous alginic acid drop in continuous PDMS phase
E-mail:
Microfluidic study is performed to investigate how multi-walled carbon nanotube (CNTs)aggregates disperse in blend system during morphology evolution. As the dispersed phase, a drop containing CNT is generated at the flow focusing and it deforms through a contraction channel (gap and width of contraction ~ 100 μm). When an aqueous polymeric drop (2 wt% alginic acid) with CNT (0.05 wt% or 0.5 wt%) is stretched through a 4:1 contraction channel, CNT aggregates enhances breakup of the stretched drop. Also, small droplets including CNTs are pinched off during relaxation of the stretched drop. Based on these observations, it is found that CNTs disperse in a multiphase system by repetitive breakup process during mixing rather than migration driven by chemical affinity.
- Abbasi S, Carreau PJ, Derdouri A, Moan M, Rheol. Acta, 48(9), 943 (2009)
- Acrivos A, Lo TS, J. Fluid Mech., 86, 641 (1978)
- Alig I, Skipa T, Lellinger D, Potschke P, Polymer, 49(16), 3524 (2008)
- Anna SL, Bontoux N, Stone HA, App. Phy.Lett., 82(3), 364 (2003)
- Baudouin AC, Devaux J, Bailly C, Polymer, 51(6), 1341 (2010)
- Bauhofer W, Kovacs JZ, Compos. Sci. Technol., 69, 1486 (2009)
- Bhunia A, Pais SC, Kamotani Y, Kim IH, AIChE J., 44(7), 1499 (1998)
- Droval G, Feller JF, Salagnac P, Glouannec P, Smart Mater.Struct., 17, 025011 (2008)
- Fox HW, Taylor PW, Zisman WA, Ind. Eng. Chem., 39, 1401 (1947)
- Hong JS, Cooper-White J, Korea-Aust. Rheol. J., 21(4), 269 (2009)
- Hong JS, Hong IG, Lim HT, Ahn KH, Lee SJ, Macromol. Mater. Eng., 297, 279 (2012)
- Kasaliwal GR, Goldel A, Potschke P, Heinrich G, Polymer, 52(4), 1027 (2011)
- Logakis E, Pandis C, Peoglos V, Pissis P, Stergiou C, Pionteck J, Potschke P, Micusik M, Omastova M, J. Polym. Sci. B: Polym. Phys., 47(8), 764 (2009)
- Oh JS, Ahn KH, Hong JS, Korea-Aust. Rheol. J., 22(2), 89 (2010)
- Pegel S, Potschke P, Petzold G, Alig I, Dudkin SM, Lellinger D, Polymer, 49(4), 974 (2008)
- Potschke P, Dudkin SM, Alig I, Polymer, 44(17), 5023 (2003)
- Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P, Express Polym. Lett., 2(10), 735 (2008)
- Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M, Compos. Sci., 69, 1756 (2009)
- Rosengarten G, Harvie DJE, Cooper-White J, Appl. Math. Model., 30(10), 1033 (2006)
- Rybak A, Boiteux G, Melis F, Seytre G, Compos. Sci. Technol., 70, 410 (2010)
- Thongruang W, Spontak RJ, Balik CM, Polymer, 43(13), 3717 (2002)
- Wi R, Oh Y, Chae C, Kim DH, Korea-Aust. Rheol. J., 24(2), 129 (2012)
- Wichmann MHG, Sumfleth J, Fiedler B, Gojny FH, Schulte K, Mech. Compos. Mater., 42(5), 395 (2006)
- Wu S, Polymer Interface and Adhesion, Marcel Dekker, NewYork (1982)
- Xu Q, Nakajima M, Appl. Phys. Lett., 85, 3726 (2004)
- Zhang QH, Chen DJ, J. Mater. Sci., 39(5), 1751 (2004)