화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.1, 29-37, February, 2013
MHD micropumping of power-law fluids: A numerical solution
E-mail:
The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.
  1. Affanni A, Chiorboli G, Numerical modelling and experimental study of an ac magnetohydrodynamic micropump, Instrumentation and Measurement Technology Conference, Sorrento, Italy. (2006)
  2. Aguilar ZP, Arumugam P, Fritsch I, J. Electroanal. Chem., 591(2), 201 (2006)
  3. Arumugam PU, Fakunle ES, Anderson EC, Evans SR, King KG, Aguilar ZP, Carter CS, Fritsch I, J. Electrochem. Soc., 153(12), E185 (2006)
  4. Bau HH, Zhu J, Qian S, Xiang Y, Sens. Actuators B., 88, 205 (2003)
  5. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric, John wiley & Sons Inc. (1987)
  6. Chatterjee D, Amiroudine S, Biomedical Microdevices., 13, 147 (2011)
  7. Duwairi HM, Abdullah M, micro-system technologies., 13, 33 (2007)
  8. Eijkel J, Dalton C, Hayden C, Burt J, Manz A, Sensors and Actuators., 92, 215 (2003)
  9. Ho JE, Journal of Marine Science and Technology., 15, 315 (2007)
  10. Homsy A, Koster S, Eijkel JCT, Ven der Berg A, Lucklum F, Verpoorte E, de Rooij NF, The Royal Society of Chemistry, Lab Chip., 5, 466 (2007)
  11. Huang L, Wang W, Murphy MC, Proc. SPIE.Design Test Microfabric. MEMS MOEMS., 3680, 379 (1999)
  12. Huang L, Wang W, Murphy MC, Lian K, Ling ZG, Microsyst. Technol., 6, 235 (2000)
  13. Jang J, Lee SS, Sens. Actuators., 80, 84 (2000)
  14. Laser DJ, Santiago JG, J. Micromech. Microeng., 14, R35 (2004)
  15. Lemoff AV, Lee AP, Sens. Actuators., B63, 178 (2000)
  16. Moghaddam S, M. S. Thesis, On the Use of MHD Micropumps for Transferring Non-Newtonian Fluids, Department of Mechanical Engineering, University of Tehran. (2011)
  17. Ramos A, Electrohydrodynamic and Magnetohydrodynamic, Microfluidic Technologies for Miniaturized Analysis Systems, Eds. Hardt S, Schonfeld F, Chapter 2, Springer. (2007)
  18. Renardy M, Rogers RC, An introduction to partial differential equations. Texts in Applied Mathematics, 2nd ed., Springer-Verlag, New York. (2004)
  19. Shahidian A, Ghassemi M, Khorasanizade S, Abdollahzade M, Ahmadi G, IEEE transactions on magnetics., 45(6), 2667 (2009)
  20. Wang PJ, Chang CY, Chang ML, Biosensors and Bioelectronics., 20, 115 (2004)
  21. Zhong J, Yi M, Bau H, Sensors and Actuators., 96, 59 (2002)