화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.3, 761-770, March, 2013
CFD study of hydrodynamics behavior of a vibrating fluidized bed using kinetic-frictional stress model of granular flow
E-mail:
The hydrodynamics of a vertically vibrating fluidized bed was studied using an Eulerian-Eulerian twofluid model (TFM) incorporating the kinetic theory of granular flow and including the frictional stress effects. Influences of frictional stresses, vibration amplitudes and frequency on behavior of the particles were studied. In the case with vertical vibration, the numerical results showed three regions of solid concentration along the bed height: a low particle concentration region near the bottom of the bed, a high concentration region in the middle of the bed, and a transition region at top of the bed. The accuracy of results was found to be closely related to the inclusion of the frictional stresses. Ability of the two-fluid model for predicting the hydrodynamics of vibrating fluidized beds was discussed and confirmed.
  1. Geldart D, Powder Technol., 7, 285 (1973)
  2. Mawatari Y, Koide T, Tatemoto Y, Takeshita T, Noda K, Adv. Powder Technol., 12(2), 157 (2001)
  3. Mawatari Y, Koide T, Tatemoto Y, Uchida S, Noda K, Powder Technol., 123, 69 (2001)
  4. Mori S, Yamamoto A, Iwata S, Haruta T, Yamada I, Mizutani E, AIChE Symp. Ser., In: (2nd Ed.), 86, 88 (1990)
  5. Wang Y, Wang TJ, Yang Y, Jin Y, Powder Technol., 127(3), 196 (2002)
  6. Luo ZF, Fan MM, Zhao YM, Tao XX, Chen QR, Chen ZQ, Powder Technol., 187(2), 119 (2008)
  7. Tai SC, Hsiau SS, Powder Technol., 194(3), 159 (2009)
  8. Xuejun Z, Shichao Y, Xiaoheng P, Exp. Therm. Fluid. Sci., 32, 1279 (2008)
  9. Naeini SE, Spelt JK, Powder Technol., 195(2), 83 (2009)
  10. Tatemoto Y, Mawatari Y, Noda K, Chem. Eng. Sci., 60(18), 5010 (2005)
  11. Tatemoto Y, Mawatari Y, Yasukawa T, Noda K, Chem. Eng. Sci., 59(2), 437 (2004)
  12. Mantle MD, Sederman AJ, Gladden LF, Huntley JM, Martin TW, Wildman RD, Shattuck MD, Powder Technol., 179(3), 164 (2008)
  13. Xuejun Z, Shichao Y, Xiaoheng P, Exp. Therm. Fluid. Sci., 32, 1279 (2008)
  14. Li X, Wang SY, Lu HL, Liu GD, Chen JH, Liu YK, Powder Technol., 197(1-2), 25 (2010)
  15. Ren B, Zhong WQ, Jin BS, Yuan ZL, Lu Y, Energy Fuels, 25(9), 4095 (2011)
  16. Oevermann M, Gerber S, Behrendt F, Particuology., 7, 307 (2009)
  17. Zhao T, Takei M, Doh DH, Flow Meas. Instrum., 21, 212 (2010)
  18. Ibsen CH, Helland E, Hjertager BH, Solberg T, Tadrist L, Occelli R, Powder Technol., 149(1), 29 (2004)
  19. Deen NG, Annaland MV, Van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 62(1-2), 28 (2007)
  20. Passalacqua A, Marmo L, Chem. Eng. Sci., 64(12), 2795 (2009)
  21. Zhong WQ, Zhang MY, Jin BS, Yuan ZL, Powder Technol., 175(2), 90 (2007)
  22. Wang XF, Jin BS, Zhong WQ, Chem. Eng. Process., 48(2), 695 (2009)
  23. Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553 (2008)
  24. Pei P, Zhang K, Ren J, Wen D, Wu G, Particuology., 8, 425 (2010)
  25. Vun S, Naser J, Witt P, Powder Technol., 204(1), 11 (2010)
  26. Lu HL, He YR, Liu WT, Ding JM, Gidaspow D, Bouillard J, Chem. Eng. Sci., 59(4), 865 (2004)
  27. Shuyan W, Xiang L, Huilin L, Long Y, Dan S, Yurong H, Yonglong D, Powder Technol., 196(2), 184 (2009)
  28. Patil DJ, Annaland MV, Kuipers JAM, Chem. Eng. Sci., 60(1), 57 (2005)
  29. Patil DJ, Annaland AV, Kuipers JAM, Chem. Eng. Sci., 60(1), 73 (2005)
  30. Hosseini SH, Ahmadi G, Rahimi R, Zivdar M, Esfahany MN, Powder Technol., 200(3), 202 (2010)
  31. Hosseini SH, Zivdar M, Rahimi R, Chem. Eng. Process., 48(11-12), 1539 (2009)
  32. Srivastava A, Sundaresan S, Powder Technol., 129(1-3), 72 (2003)
  33. Azizi S, Hosseini SH, Moraveji M, Ahmadi G, Particuology., 8, 415 (2010)
  34. Rahimi MR, Azizi S, Chem. Prod. Process Model., 6, 1 (2011)
  35. Wang SY, Liu YJ, Liu YK, Wei LX, Dong Q, Wang CS, Powder Technol., 199(3), 238 (2010)
  36. Ishikura T, Nagashima H, Ide M, Powder Technol., 131(1), 56 (2003)
  37. Johnson PC, Nott P, Jackson R, J. Fluid Mech., 210, 501 (1990)
  38. Hosseini SH, Ahmadi G, Razavi BS, Zhong WQ, Energy Fuels., 24, 6086 (2010)
  39. Acosta-Iborra A, Hernandez-Jimenez F, de Vega M, Briongos JV, Chem. Eng. J., 261, 198 (2012)
  40. Zhang X, Ahmadi G, J. Comput. Multiphase Flows., 4, 41 (2012)
  41. Ellison J, Ahmadi G, Regel L, Wilcox W, Microgravity Sci.Tec., 8, 140 (1995)
  42. Ma D, Ahmadi G, Int. J. Multiphase Flow., 16, 341 (1990)
  43. Ahmadi G, Ma D, Int. J. Multiphase Flow., 16, 323 (1990)
  44. Gidaspow D, Multiphase flow and fluidization, continuum and kinetic theory descriptions, Academic Press, Boston (1994)
  45. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635 (1969)
  46. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449 (1986)
  47. Benyahia S, Syamlal M, O’Brien TJ, “Summary of MFIX Equations 2012-1.” From URL https://mfix.netl.doe.gov/documentation/MFIXEquations2012-1.pdf, January (2012)
  48. van Wachem BGM, Schouten JC, van den Bleek CM, Krishna R, Sinclair JL, AIChE J., 47(5), 1035 (2001)
  49. Boemer A, Qi H, Renz U, Int. J. Multiph. Flow, 23(5), 927 (1997)
  50. Min J, Drake JB, Heindel TJ, Fox RO, AIChE J., 56, 1434 (2009)
  51. Azizi S, Hosseini SH, Ahmadi G, Moraveji M, Chem. Eng. Technol., 33(3), 421 (2010)
  52. Schaeffer DG, J. Diff. Equ., 66, 19 (1987)
  53. Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
  54. Benyahia S, Ind. Eng. Chem. Res., 47(22), 8926 (2008)
  55. Lettieri P, Micale G, Cammarata L, Colman D, Computational fluid-dynamics simulations of gas-fluidized beds: A preliminary investigation of different modelling approaches, In Proceedings of the 10th Germany Workshop on Two-Phase Flow Predictions (2002)
  56. Bertola F, Vanni M, Baldi G, Int. J. Chem. Reactor Eng., 1, A3 (2003)
  57. Syamlal M, Rogers W, O’Brien TJ, MFIX documentation: Theory guide, Tech. Rep. DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Center, Morgantown, West Virginia (1993)
  58. Savage SB, J. Fluid Mech., 377, 1 (1998)