Biotechnology and Bioengineering, Vol.110, No.2, 417-423, 2013
Towards a universal method for protein refolding: The trimeric beta barrel membrane Omp2a as a test case
It has recently been reported that 2-methyl-2,4-pentanediol (MPD) can modulate the protein-binding properties of sodium dodecyl sulfate (SDS), turning it into a non-denaturing detergent. Indeed both alpha (the lysozyme) and beta (the carbonic anhydrase II) soluble enzymes, as well as a beta membrane protein (PagP) have been successfully refolded into their native form by using this amphiphatic alcohol. In order to support the universal character of our MPD-based technique, we have extended its transferability to the Omp2a trimeric membrane porin. The far-UV circular dichroism signature of Omp2a refolded with our original procedure is identical to that obtained by classical techniques, clearly indicating a proper refolding. Moreover, we show that the optimal SDS/MPD ratio for refolding Omp2a is similar to what has been observed for other types of proteins. While the protocol allows refolding at higher protein concentration (up to 4?mg/mL) and ionic strength (up to 1?M NaCl) than other refolding methods, it is also more efficient at basic pH values and medium temperature (2040 degrees C). Finally, the key role of the cosolvent was highlighted by a thorough study of the efficiency of MPD analogues, and a high variability was observed, as they can be able or unable to induce refolding at low or high salt concentrations. Biotechnol. Bioeng. 2013; 110: 417423. (c) 2012 Wiley Periodicals, Inc.