화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.1, No.2, 133-139, December, 1990
메타아크릴레이트 실란을 이용한 유리섬유 강화복합재료의 물성향상
The Adhesion Promotion of Glass Fiber Reinforced Composite Using Methacrylate Functional Silanes
초록
서로 다른 스페이서기를 가지는 메타아크릴레이트 실란을 합성하여, 유리섬유 표면 위에서 이들의 흡착거동 및 배향에 관한 FI-IR을 이용하여 연구하였다. 유리섬유/불포화 폴리에스테르 복합재료의 기계적 물성은 유리섬유 표면을 처리한 실란 카플링제의 스페이서기에 의해 크게 영향을 받았다. 실리카 표면에서의 실란 카플링제의 등온 흡착율은 메타아크릴레이트 실란의 메틸렌 스페이서기가 증가함에 따라 감소하였다. 긴 스페이서기를 가지는 실란 분자는 흡착 매체 표면에 활궁처럼 휜 상태로 흡착하였다. 유리섬유/불포화 폴리에스테르 복합재료의 고온 습윤 강도를 증진시키기 위해 실란카플링제의 분자 구조와 기계적 물성과의 상관 관계에 대해서도 연구가 병행되었다.
Methacrylate functional silanes with different methylene spacer groups have been synthesized and the orientation effect and absorption behavior of these silane coupling agent were investigated by Fourier transform infrared spectroscopy(FT-IR). The mechanical properties of glass bead/polyester composites are found to be dependent on the spacer group of treated silane coupling agent. The absorption rate of the silane coupling agent onto the fumed silica surface decreases with increasing the number of the methylene spacer in methacrylate functional silanes. Silane molecules containing long spacer groups are adsorbed onto silica slightly bowed with respect to the substrate surface. The relationship between silane molecular structure and mechanical properties of polymer composites is also investigated in order to improve hot/wet properties of glass fiber/polyester composites.
  1. Wong R, "Fundamental Aspects for Fiber Reinforced Plastic Composites," R.T. Schwartz and H.S. Schwartz, Ed., Interscience, New York, p. 237 (1968)
  2. Erickson PW, J. Adhes., 2, 131 (1970)
  3. Plueddemann EP, J. Adhes., 2, 184 (1970)
  4. Plueddemann EP, "Interfaces in Polymer Matrix Composites," in Composite Materials, Ed., Academic, New York (1974)
  5. Kass RL, Kardos JL, Polym. Eng. Sci., 11, 11 (1971) 
  6. Hooper RC, 11th Ann. Techn. Conf. Reinforced Plastics Div. SPI, Section 8-B (1956)
  7. Erickson PW, Volpe AA, Cooper ER, Proc. 19th Ann. Tech. Conf. Reinforced Plastics Div., SPI, Section 21-A (1964)
  8. Droste DH, DiBenedetto AT, J. Appl. Polym. Sci., 13, 2149 (1969) 
  9. Outwater JP, Proc. 11th Ann. Tech. Conf. Reinforced Plastics Div., SPI, Section 9-B (1956)
  10. Plueddemann EP, Clark HA, Nelson LE, Hoffman KR, Mod. Plast., 40, 133 (1963)
  11. Plueddemann EP, Clark HA, Nelson LE, Hoffmann KR, Mod. Plast., 39, 135 (1962)
  12. Plueddemann EP, Pape PG, Mod. Plast., 62, 78 (1985)
  13. Ishida H, Miller JD, Proc. 39th Ann. Tech. Conf., Reinforced Plastics/Composite Inst., SPI, Section 12-E (1984)
  14. Plueddemann EP, Pape PG, Proc. 40th Ann. Tech. Conf. Reiforced Plastics/Composites Inst. SPI, Section 17-F (1985)
  15. Ishida H, Koenig JL, J. Colloid Interface Sci., 64, 565 (1978) 
  16. Dow Corning Corporation, Silane Coupling Agents, Technical Brochure (1981)
  17. Ishida H, Naviroj S, Koenig JL, "Physicochemical Aspects of Polymer Surfaces," Vol. 1, K.L. Mittal, Ed. Plenum, New York, p. 91 (1983)
  18. Lwen WK, Broge EC, J. Phys. Chem., 65, 16 (1966)
  19. Sindorf DW, Maciel GE, Phys. Chem., 86, 5208 (1982) 
  20. Favis BD, Blanchard LP, Leonard J, Prud'homme RE, J. Appl. Polym. Sci., 28, 1236 (1983)
  21. Favis BD, Blanchard LP, Polym. Compos., 5, 11 (1984) 
  22. Miller JD, Ishida H, Surf. Sci., 148, 601 (1984) 
  23. Japan Patent, 104,890 56 (1981)
  24. Potenzone R, Cavicchi J, Weintraub E, Hopfinger AJ, Compos. Chem., 1, 187 (1977) 
  25. Perlstei R, Chemlab Users Guide, Available through Molecular Design Ltd., 1122B Street, Hayward, CA 94541 U.S.A. (1982)