화학공학소재연구정보센터
Electrophoresis, Vol.34, No.3, 456-462, 2013
Five non-synonymous SNPs in the gene encoding human deoxyribonuclease I-like 2 implicated in terminal differentiation of keratinocytes reduce or abolish its activity
Several non-synonymous SNPs in the human deoxyribonuclease I-like 2 (DNase 1L2) gene responsible for DNA degradation during terminal differentiation of epidermal keratinocytes have been identified. However, only limited population data are available, and furthermore the effect of these SNPs on the DNase 1L2 activity remains unknown. Genotyping of all of the 17 SNPs was performed using the PCR-RFLP method in three ethnic groups including 14 different populations. A series of amino acid-substituted DNase 1L2 corresponding to each SNP was expressed, and its activity was measured. All of the six non-synonymous SNPs exhibited a mono-allelic distribution, whereas the distribution of some SNPs other than exonic ones was ethnicity-dependent. Each of the minor alleles in SNPs, p.Ala20Asp, p.Val104Leu, p.Asp197Ala, p.Glu274Lys and p.Asp287Asn, among the non-synonymous SNPs produced low or no activity-harbouring DNase 1L2. DNase 1L2 is well conserved, retaining full levels of enzymatic activity, with regard to these exonic SNPs in human populations. It seems plausible to assume that these SNPs affecting the activity may be one of the factors responsible for a genetic pre-disposition for failure of differentiation-associated cell death in various keratinocyte lineages, thereby leading to the development of parakeratosis. Our results may have clinical implications in relation to the pathogenesis of parakeratosis.