Industrial & Engineering Chemistry Research, Vol.52, No.4, 1562-1570, 2013
Novel Polyurea Microcapsules Using Dendritic Functional Monomer: Synthesis, Characterization, and Its Use in Self-healing and Anticorrosive Polyurethane Coatings
Polyamidoamine (PAMAM) dendrimer of zero generation was synthesized and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic techniques. A novel chemistry has been developed to synthesize polyurea microcapsules containing solvent and linseed oil as the active healing agent by interfacial polymerization of commercial methylene diphenyl diisocyanate (MDI) and dendritic 0.0 G PAMAM capable of cross-linking to form a shell material. Spherical with some irregular shape microcapsules were observed with average diameter from 20 to 270 mu m at different agitation rates (3000-8000 rpm). Interfacial interaction between polyurea microcapsules and polyurethane (PU) coating were studied by FTIR, and this showed that chemical bonds were formed by the reaction between isocyanates and the amine groups present on the wall of microcapsules. The thermal stability of the rnicrocapsules showed that prepared microcapsules experienced excellent stability up to 380 degrees C. The anticorrosive performance of PU coatingd loaded with different percentages of microcapsules was carried out in 5% NaCl aqueous solution. The results showed that the composite provides satisfactory anticorrosive properties at 5% capsule loading under an accelerated corrosion process. The idea and approach presented in this work have the potential to fabricate microcapsules which could provide better anticorrosive and mechanical properties to coating composites.