Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.2, 108-118, June, 1991
황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용
Interactions between Hydrodenitrogenation of pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst
초록
황화 CoMo/γ-Al2O3 촉매를 사용하여 473∼723K 의 온도와 10∼15×105Pa의 압력 그리고 접촉시간 0.0125∼0.03g-cat hr/ml-feed 범위에서 pyridin의 수첨탈질반응과 m-cresol의 수첨탈산소 반응의 상호작용 및 그 속도론에 관하여 연구하였다. Pyridin의 수첨탈질반응과 m-cresol의 소첨탈산소 반응의 상호반응을 저지억제하였으며, pyridin에 의한 m-cresol의 수첨탈산소반응의 억제효과는 m-cresol에 의한 pyridin의 수첨탈질반응의 억제효과보다 더 컸으나 반응성은 m-cresol이 더 높았다. Pyridin의 수첨탈질반응 속도식 및 m-cresol의 수첨탈산소반응 속도식을 LHHW 모델을 이용하여 구한 결과 γHDN=kHDN·KpCp / (1+KcCc+KpCp) γHDO =kHDO·KcCc /(1+KcC c+KpCp)였다. 각 온도에서 반응속도상수 및 흡착평형상수를 구하여 Arrhenius plot 과 Van't Hoff plot을 행하여 구한 활성화 에너지값은 pyridin과 m-cresol이 각각 16.21 Kcal/mole, 13.83 Kcal/mole이었고, 흡착열은 각각 -6.458 Kcal/mole, -5.045 Kcal/mole이었다.
Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided CoMo/γ-Al2O3 catalyst at the range of temperatures between 473 K and 723 K, the total pressures between l0 × 105 Pa and 50×105 Pa, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be γHDN=kHDN·KpCp/(1+KcCc+KpCp) andγHDO=kHDO·KcCc /(1+KcCc+KpCp)c in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/ mol, respectively.
- Satterfield CN, Cocchetto JF, Ind. Eng. Chem. Process Des. Dev., 20(1), 53 (1981)
- Knishnamurthy S, Panvelken S, Shah YT, AIChE J., 27(6), 994 (1981)
- Bartsch R, Taniellian C, J. Catal., 3, 353 (1974)
- Aubert C, Durand R, Geneste P, Moreau C, J. Catal., 97, 169 (1986)
- Wikens JA, Ind. Eng. Chem. Process Des. Dev., 19, 154 (1980)
- Weitsz PB, Prater CD, Adv. Catal., 6, 143 (1954)
- Satterfield CN, "Heterogeneous Catalysis in Practice," N.Y. McGraw-Hill, 265 (1980)
- Satterfield CN, Gultekim S, Ind. Eng. Chem. Process Des. Dev., 20(1), 62 (1981)
- Lepage FF, "Applied Heterogeneous Catalysis," Technip, IFP, Pris, 394-396 (1978)
- Singhal GH, Espino RL, Sobel JE, J. Catal., 57, 446 (1981)
- Kallurg RKR, Wanda MR, Thomas TT, Boocock DGB, Crimi A, J. Catal., 96, 35 (1985)
- Odebunmi EO, Ollis DF, J. Catal., 80, 56 (1983)
- Kim KL, Choi KL, Ind. Eng. Chem., 27(2), 340 (1987)
- Shah HY, Satterfield LN, Ind. Eng. Chem. Process Des. Dev., 23(1), 20 (1984)
- McIlivred HG, Ind. Eng. Chem. Process Des. Dev., 10(1), 125 (1971)
- Lee CL, Ollis DF, J. Catal., 87, 325 (1984)
- Kilanowski DR, Gates GC, J. Catal., 62, 70 (1980)
- Furionsky E, AIChE J., 25(2), 306 (1979)
- Kim KL, Choi KS, Lee HS, Proceedings of the 4th ROK/ROC Joint Workshop on Catalysis, 75 (1987)
- Modell M, Ind. Eng. Chem. Process Des. Dev., 29, 296 (1980)
- Nagai M, Masunaga T, Naga-Oka N, J. Catal., 101, 284 (1986)
- Rollmann LD, J. Catal., 46, 243 (1977)
- Satterfield CN, Modell M, Mager IF, AIChE J., 21(6), 1100 (1975)
- Yang SH, Satterfield CN, J. Catal., 81, 335 (1983)
- Masatoshi N, Toshiaki K, J. Catal., 81, 440 (1983)
- Odebunmi EO, Ollis DF, J. Catal., 80, 76 (1983)
- Lee CL, Ollis DF, J. Catal., 87, 332 (1984)
- Odebumni EO, Ollis DF, J. Catal., 80, 65 (1983)
- Gupta RK, J. Appl. Chem. Biotechnol., 28, 641 (1978)
- Satterfield CN, "Heterogeneous Catalysis in Practice," N.Y. McGraw-Hill, 235 (1980)
- Kim KL, Choi KS, Shin CH, Proceedings of the 3th ROK/ROC Joint Workshops on Catalysis, 249 (1985)
- Gates GC, Broderick DH, AIChE J., 27(4), 663 (1981)
- Sonnemans J, Mars P, J. Catal., 34, 215 (1974)