Journal of Materials Science, Vol.48, No.3, 1358-1367, 2013
Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography
The mechanical properties of fibre composite materials are largely determined by the orientation of fibres within the matrix. Which orientation distribution short fibres follow in different parts of a structural element is still a subject for research and discussions in the scientific community. In this article, we present a modern and advanced method for measuring the orientation of short fibres in steel fibre-reinforced concrete (SFRC) by X-ray microtomography. With this method, a voxel image of the fibres is obtained directly in 3D, and the orientation of each individual fibre is calculated based on a skeletonized representation of this image. Scans of 12 SFRC samples, taken from the central height region of real-size floor slabs, reveal the fibres to be mostly horizontally oriented near the centre of a floor slab and more vertically oriented near the edge; here the alignment with the formwork dominates. The fibre orientation distributions are characterized by several orientation parameters as quantitative measures for the alignment. On the practical side, this method has the potential to be incorporated into the development and production process of SFRC structures to verify how the fibres contribute to capacity.