Journal of Materials Science, Vol.48, No.5, 2038-2045, 2013
Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution
Interconnected submicron pores were created on the walls of a honeycomb monolith structure by the unidirectional freezing of a binary polymer solution. Agglomerated globules of polyethylene glycol (PEG) in a binary solution of polystyrene (PS) and PEG in 1,4-dioxane solvent were frozen unidirectionally in a liquid nitrogen bath. Removing the frozen solvent and the agglomerated globules of PEG by freeze-drying and leaching, respectively, enabled us to create interconnected pores in the PS walls. The combination of PS and PEG was effective in creating interconnected pores in the walls because PS and PEG are poorly soluble in one another. The higher freezing rate and lower PEG weight fraction of the binary solution effectively reduced the pore size in the microtube walls.