Macromolecules, Vol.46, No.2, 463-473, 2013
Influence of Trace Amount of Well-Dispersed Carbon Nanotubes on Structural Development and Tensile Properties of Polypropylene
Functionalized multiwalled carbon nanotubes (F-MWCNTs) were individually dispersed in a commercial polypropylene (PP) matrix using our well-established alpha-zirconium phosphate (ZrP) nanoplatelet-assisted dispersion approach. The F-MWCNTs remained uniformly dispersed in PP after melt mixing and injection-molding and were found to remarkably enhance modulus and strength at only 0.1 wt % loading. The individual F-MWCNTs were mostly oriented and extended in the flow direction and were shown to be integrated within the crystalline structure of the matrix. The change in mechanical properties is attributed to both the modification in crystal structure due to MWCNT-induced nucleation and the direct reinforcement of crystalline lamellae and amorphous regions by the MWCNTs. We propose that the compatibilized F-MWCNTs exhibit sufficient interfacial interaction with the PP matrix to anchor lamellae stacks and resist interlamellar slip. The F-MWCNTs also reinforce amorphous domains between crystallites and behave as "super"-tie chains, thereby achieving improvement in tensile properties at low MWCNT loading. This approach for nanocomposite preparation is scalable and easily adapted for other thermoplastics by proper MWCNT surface functionalization.