화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.48, 19576-19579, 2012
Temperature-Dependent Dynamical Transitions of Different Classes of Amino Acid Residue in a Globular Protein
The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.