Polymer(Korea), Vol.37, No.2, 204-210, March, 2013
용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향
Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites
E-mail:
초록
첨가제(윤활제 및 산화방지제)와 용융혼합 조건(온도, 시간 및 로터 속도)이 폴리프로필렌(PP) 기반 WPC(wood polymer composite)의 기계적 특성에 미치는 영향을 조사하였다. WPC는 용융혼합 후 압축성형하여 제조하였다. 용융혼합 과정을 이해하기 위해 WPC 용융혼합물의 토크 변화를 측정하였다. 말레산무수물로 개질된 폴리프로필렌을 상용화제로, 나노점토를 보강재로 각각 사용하였다. WPC의 기계적 특성을 측정하기 위해 UTM과 충격시험기를 이용하였고 색차계를 이용하여 WPC의 용융혼합 조건에 따른 변색을 측정하였다. 기계적 특성 분석에 따른 최적용융 혼합 조건은 170 ℃, 15분, 60 rpm인 것으로 나타났다. 윤활제와 산화방지제의 함량이 증가할수록 WPC의 기계적 특성이 하락함을 확인하였다. 용융혼합 과정에서 목분만을 별도로 나중에 투입하는 이단계 방법이 전형적인 일단계 방법보다 WPC의 기계적 특성 향상에 더 효과적이었다.
Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a
reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was 170 ℃, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method,
adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.
- Gassan J, Bledzki AK, Composites Part A., 28, 1001 (1997)
- Qiu W, endo T, Hirotsu T, Eur. Polym. J., 42, 1059 (2006)
- Nunez AJ, Kenny JM, Reboredo MM, Aranguren MI, Marcovich NE, Polym. Eng. Sci., 42(4), 733 (2002)
- Joseph K, Thomas S, Pavithran C, Polymer, 37(23), 5139 (1996)
- Nachtigall SMB, Cerveira GS, Rosa SML, Polym.Test., 26, 619 (2007)
- Pracella M, Haque MM, Alvarez V, Macromol. Mater.Eng., 2, 554 (2010)
- Lee H, Kim DS, J. Appl. Polym. Sci., 111(6), 2769 (2009)
- Tabari HZ, Nourbakhsh A, Ashori A, Polym. Eng. Sci., 51(2), 272 (2011)
- Park B, Kim DS, Polym.(Korea), 35(2), 124 (2011)
- Fabiyi JS, McDonald AG, Composites Part A., 41, 1434 (2010)
- Bledzki AK, Faruk O, Appl. Comp. Mater., 10, 365 (2003)
- Leu SY, Yang TH, Lo SF, Construct. Build. Mater., 37, 237 (1997)
- Yeh SK, Gupta RK, Composites Part A., 39, 1694 (2008)
- Naja SK, Marznaki MM, Chaharmahali M, J. Compos.Mater., 42, 2543 (2009)
- Nasir A, Yasin T, Islam A, J. Appl. Polym. Sci., 119(6), 3315 (2011)
- Miyazaki K, Moriya K, Okazaki N, Terano M, Nakatani H, J. Appl. Polym. Sci., 111, 3835 (2009)
- Morgan S, Ye ZB, Subramanian R, Zhu SP, Polym. Eng. Sci., 50(5), 911 (2010)
- Sarrabi S, Colin X, Tcharkhtchi A, J. Appl. Polym. Sci., 118(2), 980 (2010)
- Ambrogi V, Cerruti P, Carfagna C, Malinconico V, Marturano M, Perrotti M, Persico P, Polym. Degrad. Stab., 96, 2152 (2011)
- Bahlouli N, Pessey D, Raveyre C, Guillet J, Ahzi S, Dahoun A, Hiverr JM, Mater. Design., 33, 451 (2012)