Polymer(Korea), Vol.37, No.2, 240-248, March, 2013
Mercaptan 경화제에 의한 저온속경화 에폭시의 경화거동에 관한 연구
Study on Cure Behavior of Low Temperature and Fast Cure Epoxy with Mercaptan Hardener
E-mail:
초록
본 연구에서는 DGEBA(diglycidyl ether of bisphenol A)를 사용한 에폭시/mercaptan 경화제의 경화 반응 거동을 에폭시/아민 유도체형 경화제와 비교하여 연구하였다. 경화 반응 거동은 DSC 분석에 의해 승온 및 등온의 조건에서 경화되는 과정을 연구하였다. DSC의 승온 실험에서는 Kissinger 법을 이용하였으며, 등온 실험에서는 Kamal의 속도모델을 이용하여 분석하였다. 결과적으로 활성화 에너지는 아민 유도체형 경화제를 사용하였을 때 약 40 kcal/mol이고, mercaptan 경화제를 사용하였을 때 약 28에서 19 kcal/mol로 -SH 관능기가 증가할수록 감소하였다. 에폭시/아민 유도체형 경화제는 약 90 ℃ 이상에서 경화 반응이 개시되는 반면, 에폭시/mercaptan 경화제에서는 경화 반응 개시 온도가 약 80 ℃ 이내로 낮아지고, 반응 속도가 상승하여 반응 시간이 10분 이내로 단축되었다. 또한 에폭시/mercaptan 경화제계는 자기 촉매 반응 모델을 따르는 것을 확인하였고 약 20~40%의 경화도에서 최대 반응 속도를 나타내었다.
The curing behaviors of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardener were studied by the comparison with amine-adduct type hardener. Curing behaviors were evaluated by DSC at dynamic and isothermal conditions. In the DSC, the dynamic experiments were based on the method of Kissinger’s equation, and the isothermal experiments were fitted to the Kamal’s kinetic model. Activation energy of epoxy/amine-adduct type hardener was ca. 40 kcal/mol. As the functional group of mercaptan hardener, -SH increased, on epoxy/mercaptan hardeners, the activation energies decreased from 28 to 19 kcal/mol. Epoxy/amine-adduct type hardener was initiated at 90 ℃ or higher. However, epoxy/mercaptan hardeners reduced the initiation temperatures below 80 ℃ and shortened the durations of curing reaction within 10 min. We found out that the reaction kinetics of epoxy with mercaptan hardener followed the autocatalytic reaction
models, and the maximum reaction rates were shown at the conversions of 20~40%.
- Kim DJ, Lee SH, Seo MR, Appl. Chem., 9, 542 (2004)
- Gao JG, Li DL, Shen SG, Liu GD, J. Appl. Polym. Sci., 83(7), 1586 (2002)
- Doyle CD, Anal. Chem., 33, 77 (1961)
- Wisanrakkit G, Gillham JK, J. Appl. Polym. Sci., 41, 2885 (1990)
- Yousefi A, LaJleur PG, Gauuin R, Polym. Comp., 18, 157 (1997)
- Hatakeyama T, Liu Z, Editors, Handbook of Thermal Analysis, John Wiley & Sons, New York (1998)
- Winter HH, Polym. Eng. Sci., 27, 1698 (1987)
- Kissinger HE, Anal. Chem., 29, 1702 (1957)
- Camargo RE, Gonzalez VM, Macosko CW, Rubber Chem. Tech., 56, 774 (1983)
- Keenan MR, Appl. Polym. Sci., 33, 1725 (1987)
- Turi EA, Thermal Characterization of Polymeric Materials, 2nd edition, Academic Press, San Diego (1981)
- Wise CW, Cook WD, Goodwin AA, Polymer, 38(13), 3251 (1997)
- Huguenin FGAE, Klein MT, Ind. Eng. Chem. Proc. Res.Dev., 24, 166 (1985)
- Deng Y, Martin GC, Macromolecules, 27(18), 5147 (1994)
- Kim BS, Chiba T, Inoue T, Polymer., 34, 2809 (1993)
- Aronhime MT, Gillham JK, Adv. Polym. Sci., 78, 83 (1986)
- Han S, Kim WG, Yoon HG, Moon TJ, J. Appl. Polym. Sci., 68(7), 1125 (1998)
- Chern CS, Poehlein GW, Polym. Eng. Sci., 27, 788 (1987)
- Kim DH, Kim SC, Polym. Bull., 18, 533 (1987)
- Khanna U, Chanda M, J. Appl. Polym. Sci., 49, 319 (1993)
- Wan J, Li C, Bu Z, Xu C, Li B, Fan H, J. Chem. Eng., 188 (2012)