화학공학소재연구정보센터
Clean Technology, Vol.19, No.1, 38-43, March, 2013
기상흡착 방법에 의한 저등급 석탄의 안정화 연구
The Stabilization Study of Low-rank Coal by Vapor Adsorption
E-mail:
초록
저등급 석탄의 건조 후 안정화하기 위한 방법으로 탄화수소의 기상흡착에 대한 연구를 수행하였다. 밀폐된 5 L의 데시케이터 용기에 건조 석탄과 안정화제를 넣고 주어진 온도에서 일정 시간 동안 유지시킨 후 석탄의 표면 특성과 자연발화 경향을 살펴보았다. 기상흡착 후 건조 석탄의 표면적은 미세기공을 중심으로 감소하였다. 흡착시간과 온도가 증가할수록 안정화 석탄의 자연발화 경향은 감소하는 것으로 나타났다. 안정화제의 종류에 따른 자연발화 경향은 큰 차이를 보이지 않았다. 분석 결과에 의하면 석탄의 0.5 wt% 이하인 소량 흡착으로 안정화 효과를 나타내는 것이 확인되었으며, 저온에서 기상흡착에 의한 안정화 현상은 저분자량의 탄화수소 흡착에 의한 것으로 나타났다.
Vapor adsorption of hydrocarbon has been studied for stabilization after drying low-rank coal. The surface characteristics and the propensity of spontaneous combustion were observed for stabilized coal which was maintained with hydrocarbons as stabilizer at several conditions of residence time and temperature. Surface area of micropores in coal mainly decreased after vapor adsorption. As residence time and temperature of adsorption process increased, the propensity of spontaneous combustion decreased. The type of hydrocarbons did not effect on the propensity of spontaneous combustion. As the analysis results of this work, the amount of hydrocarbon adsorbates required to stabilize dried coal was 0.5 wt% or less of coal, and the stabilizing effect was induced by adsorption of low-molecular-weight hydrocarbons.
  1. Mujumdar AS, Jangam SV, “Drying of Low rank Coal,” M3TC Technical Report, January (2011)
  2. Fei Y, Aziz AA, Nasir S, Jackson WR, Marshall M, Hulston J, Chaffee AL, Fuel, 88(9), 1650 (2009)
  3. Unal S, Wood DG, Harris IJ, Fuel., 71, 183 (1992)
  4. Umar DF, Daulay B, Usui H, Deguchi T, Sugita S, Coal Prep., 25, 31 (2005)
  5. Japan Coal Energy Center; Kobe Steel, Ltd., “Low-rank Coal Upgrading Technology (UBC process),” Clean Coal Technologies in Japan, 77 (2006)
  6. Clark K, “Commercial Scale Low rank Coal Upgrading using the BCB Process,” 2nd Coaltrans Upgrading Coal Forum, Presentation (2010)
  7. Wang C, Firor R, “Simulated Distillation System for ASTM D2887, Based on the Agilent 6890N GC,” Agilent Technologies, 5989-2726EN (2005)
  8. Trumbore CD, Environ. Prog., 18, 250 (1999)
  9. Lim CS, Manan ZA, Sarmidi MR, J. Am. Oil Chemists' Soc., 80, 1147 (2003)
  10. http://www.cheric.org/research/kdb
  11. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure & Appl. Chem., 57, 603 (1985)
  12. Xuyao Q, Wang D, Milke JA, Zhong X, Min. Sci. Technol., 21, 255 (2011)
  13. Kadioglu Y, Varamaz M, Fuel, 82(13), 1685 (2003)
  14. Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y, Fuel., 103, 258 (2013)
  15. Tompsett GA, Krogh L, Griffin DW, Conner WC, Langmuir, 21(18), 8214 (2005)
  16. Park JN, Kim RH, Woo HC, Chun BS, Clean Technol., 18(2), 191 (2012)
  17. Tahmasebi A, Yu JL, Han YN, Yin FK, Bhattacharya S, Stokie D, Energy Fuels, 26(6), 3651 (2012)