화학공학소재연구정보센터
Journal of Catalysis, Vol.164, No.2, 347-362, 1996
In-Situ C-13 MAS NMR-Study of N-Hexane Conversion on Pt and Pd Supported on Basic Materials .2. On the Mechanism of Isomerization and Hydrocracking
C-13 MAS NMR spectroscopy was performed in situ to investigate the mechanisms of n-hexane isomerization and hydrocracking on Pt and Pd supported on Al-stabilized magnesia (Pt/Mg(Al)O and Pd/Mg(Al)O), and Pt on KL zeolite (Pt/KL). All the catalysts had high metal dispersion, the metal particle sizes being 13, 11, and 18 Angstrom, respectively. n-Hexane 1-C-13 was used for in situ label tracer experiments. C-13 MAS NMR spectra were obtained during the time course of the reaction at 573 and 653 K. The NMR results were then quantified, and the reaction kinetics were studied. Identification of the primary and secondary labeled reaction products led to the conclusion that both cyclic and bond-shift isomerization mechanisms operate on the three catalysts. In the case of Pt/Mg(Al)O, the cyclic mechanism accounts for 80% of the isomerization products. In the case of Pt/KL and Pd/Mg(Al)O, the contribution of bond-shift reactions increases due to restricted formation of the methylcyclopentane intermediate on the former and to suppressed hydrogenolysis of methylcyclopentane on the latter, A nonselective cyclic isomerization mechanism operates on magnesia catalysts, while on Pt/KL selective bisecondary bond rupturing occurs. Mechanistic pathways of bond-shift and hydrocracking reactions involve both 1,3- and 2,4-metallocyclobutane intermediates in the case of magnesia-supported catalysts, while in the case of the Pt/KL catalyst a 1,3-metallocyclobutane intermediate is preferentially formed. Only terminal scission occurs on Pt/KL. The Pd catalyst demonstrates enhanced activity in demethylation. The observed differences in the mechanistic pathways are explained on the basis of the specific properties of the metal and support.