화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.2, 208-213, April, 2013
난연제 종류에 따른 연질 폴리우레탄 폼의 난연 특성에 대한 연구
Effect of Flame Retardants on Flame Retardancy of Flexible Polyurethane Foam
E-mail:
초록
본 연구에서는 인계 난연제가 첨가된 연질 폴리우레탄 폼을 합성하여 난연제의 종류에 따른 난연성능 변화를 고찰하였다. 난연제로는 Tetramethylene bis(orthophosphorylurea) [TBPU]와 Phosphinyl alkylphosphate ester [CR-530], Resorcinol bis diphenylphosphate [RDP], Triethyl phosphate [TEP] 등을 사용하였다. 열중량분석기를 사용하여 난연제에 따른 폴리우레탄 폼의 열분해거동을 알아보았으며, 콘칼로리미터를 이용하여 열방출량, 질량감소율, 연기발생량, CO 및 CO2 발생량 등을 측정하였다. TBPU가 첨가된 폴리우레탄 폼은 난연제가 첨가되지 않은 폴리우레탄 폼에 비하여 낮은 온도 에서 분해가 시작되었으나 고온에서는 많은 양의 char를 생성하였다. 콘칼로리미터 시험 결과 TBPU가 첨가될 경우 평균 발열량, 최대 발열량, 유효연소열, 질량감소율, CO 및 CO2 발생량이 감소하였고 다른 난연제에 비하여 낮은 값을 나타내어 우수한 난연성능을 나타냄을 알 수 있었다.
In this study, the effect of phosphorus flame retardants on the flame retardancy of the flexible polyurethane foam (PUF) was investigated. Tetramethylene bis(orthophosphorylurea) [TBPU] and phosphinyl alkylphosphate ester [CR-530], resorcinol bis diphenylphosphate [RDP], triethyl phosphate [TEP] were used as flame retardants. The results of thermogravimetric analysis(TGA) indicate that TBPU added PUF produces more charred residues than the other flame retardant added PUF. It was found that TBPU added PUF exhibits low mean heat release rate (HRR), peak HRR, effective heat of combusion (EHC), mass loss rate (MLR), CO yield and CO2 compared to those other flame retardants.
  1. Kim SB, Sin YJ, Kim YH, KIGAS., 5, 79 (2001)
  2. D Drysdale, Fire and cellular polymers, Elsevier Applied Science, London (1987)
  3. Magnusson A, Lundmark S, Andersson A, UTECH Europe., 2006, 63 (2006)
  4. Tang Z, Maroto-Valer MM, Andresen JM, Miller JW, Listemann ML, McDaniel PL, Morita DK, Furlan WR, Polymer, 43(24), 6471 (2002)
  5. Levchik SV, Weil ED, Polym Int., 53, 1585 (2004)
  6. Thirumal M, Singha NK, Khastgir D, Manjunath BS, Naik YP, J. Appl. Polym. Sci., 116(4), 2260 (2010)
  7. Liu J, Ma DZ, J. Appl. Polym. Sci., 84(12), 2206 (2002)
  8. Luchkina LV, Askadskii AA, Bychko KA, Russ. J.Appl. Chem., 78, 1337 (2005)
  9. Mahfuz H, Rangar VK, Islam MS, Jeelani S, Composites. Part A., 35, 453 (2004)
  10. Zatorski W, Brzozowski ZK, Kolbrecki A, Polym. Degrad.Stab., 93, 2071 (2008)
  11. Thirumal M, Khastgir D, Singha NK, J. Macromol. Sci.,Pure Appl. Chem., 46, 704 (2009)
  12. Ni J, Tai Q, Lu H, Poly. Adv. Technol., 21, 392 (2010)
  13. Kim J, Lee K, Bae J, Yang J, Hong S, Polym. Degrad. Stab., 79, 201 (2003)
  14. Jang BN, Choi J, Polym. Sci. Technol., 20(1), 8 (2009)
  15. Modesti M, Zanella L, Lorenzetti A, Bertani R, Gleria M, Polym. Degrad. Stab., 87, 287 (2005)
  16. Lee GW, Kim GE, KIFSE., 17, 76 (2003)
  17. Kramer RH, Zammarano M, Linteris GT, Polym. Degrad.Stab., 95, 1115 (2010)
  18. Kim CH, Seo WJ, Kwon OD, Kim SB, Appl. Chem.Eng., 2, 540 (2011)
  19. Chung YJ, Kim Y, Kim S, J. Ind. Eng. Chem., 15(6), 888 (2009)
  20. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998)
  21. Chung YJ, Lim HM, Jin E, Oh JK, Appl. Chem. Eng., 22(4), 439 (2011)
  22. Delichatsios M, Paroz B, Bhargava A, Fire Saf. J., 38, 219 (2003)
  23. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  24. Lee BG, Lee JH, Bang DS, Elast. Comp., 46, 164 (2011)