화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.3, 784-790, May, 2013
Reduction of [Fe(III)EDTA]- catalyzed by activated carbon modified with KOH solution
E-mail:
NO and SO2 can be eliminated simultaneously by [Fe(II)EDTA]2- solution with a pH range of 5.6-8.0 at 25-80 ℃ . Activated carbon is used to catalyze the regeneration of [Fe(II)EDTA]2-. In this paper, KOH solution has been utilized to modify the carbon to improve its catalytic capability. Experimental results show that the optimal modification factors are as follow: KOH concentration 6.0 mol l^(-1), impregnation time 9 h, activation temperature 700 ℃ and activation time 4 h. After KOH modification, the surface area of activated carbon decreases. But its basicity is enhanced, which plays an important role in improving the catalytic characteristics of activated carbon in the reduction of [Fe(III)EDTA]-. The experimental results demonstrate that the activated carbon modified by concentrated KOH solution can get a higher NO removal efficiency than the original activated carbon.
  1. Pereira CJ, Amiridis MD (Eds.)., NOx Control from Stationary Sources: Overview of Regulations, Technology and Research Frontiers., Vol. 552, American Chemical Society, Washington, DC, 1 (1995)
  2. Myers EB, Overcamp TJ, Environ. Eng. Sci., 19, 321 (2002)
  3. Chu H, Chien TW, Li SY, Sci. Total Environ., 275, 127 (2001)
  4. Wei JC, Yu P, Cai B, Luo YB, Tan HZ, Chem. Eng. Technol., 32(1), 114 (2009)
  5. Gambardella F, Alberts MS, Winkelman JGM, Heeres EJ, Ind. Eng. Chem. Res., 44(12), 4234 (2005)
  6. Suchecki TT, Mathews B, Kumazawa H, Ind. Eng. Chem. Res., 44(12), 4249 (2005)
  7. Teramoto M, Hiramine S, Shimada Y, Sugimoto Y, Ternishi H, J. Chem. Eng. Jpn., 11, 450 (1978)
  8. Wang L, Zhao WR, Wu ZB, Chem. Eng. J., 132(1-3), 227 (2007)
  9. Mi XH, Gao L, Zhang SH, Cai LL, Li W, Bioresour. Technol., 12, 2940 (2009)
  10. Biao ZBA, Wang L, Zhao WR, Chem. Eng. J., 140(1-3), 130 (2008)
  11. Maas P, Brink P, Klapwijk B, Lens P, Chemosphere., 7, 243 (2009)
  12. Manconi I, Maas P, Lens P, Nitric Oxide., 15, 40 (2006)
  13. Zhu HS, Mao YP, Yang XJ, Chen Y, Long XL, Yuan WK, Sep. Purif. Technol., 74(1), 1 (2010)
  14. Yang XJ, Yang L, Dong L, Long XL, Yuan WK, Energy Fuels, 25(10), 4248 (2011)
  15. Rodriguez-Reinoso F, Carbon as a Catalyst Support. Porosity in Carbons: Characterization and Applications, Edward Arnold, London, 253 (1995)
  16. La´ szlo´ K, Bo´ ta A, Nagyu LG, Carbon., 35(5), 593 (1997)
  17. Ahumada E, Lizama H, Orellana F, Sua´ rez C, Huidobro A, Sepu´ lveda-Escribano A, Rodrı´guez-Reinoso F, Carbon., 40, 2827 (2002)
  18. Caturla F, Molina-Sabio M, Rodriguez-noso F, Carbon., 29, 999 (1991)
  19. Morawski AW, Inagaki M, Desalination, 114(1), 23 (1997)
  20. Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ, Appl. Surf. Sci., 254(22), 7165 (2008)
  21. El-Hendrawy ANA, Carbon., 41, 713 (2003)
  22. Tamon H, Okazaki M, Carbon., 34(6), 741 (1996)
  23. Cheng JY, Yang L, Dong L, Long XL, Yuan WK, J. Ind. Eng. Chem., 18(5), 1628 (2012)
  24. Pradhan KB, Sandle KN, Carbon., 37, 1323 (1999)
  25. Chen JP, Wu SN, Langmuir, 20(6), 2233 (2004)
  26. Zawadzki J, Infrared Spectroscopy in Surface Chemistry of Carbons. Chemistry and Physics of Carbon, vol. 21, Dekker, New York, 147 (1989)
  27. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A, Carbon., 35(12), 1799 (1997)
  28. Pradhan BK, Sandle NK, Carbon., 37, 1323 (1999)
  29. Rodriduez-Reinoso F, Carbon., 36(3), 159 (1998)
  30. Leon Y, Leon CA, Radovic LR, in: Thrower PA (Ed.)., Chemistry and Physics of Carbon, vol. 24, Marcel Dekker, NewYork, 213 (1994)