화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.3, 886-897, May, 2013
Kinetic study of the thermal decomposition process of calcite particles in air and CO2 atmosphere
E-mail:
The thermal decomposition process of calcite particles (0.45-3.60 mm average diameter), made up of porous agglomerates of very small CaCO3 microcrystals, was studied in the 975-1216 K temperature range. The experiments were carried out under isothermal conditions in air atmosphere, in CO2 atmosphere, as well as in a gas stream comprising different concentrations of air and CO2. An equation is proposed that relates the calcite conversion degree to both reaction time and operating conditions. The equation satisfactorily fits to the experimental results obtained in the entire tested range of particle sizes and temperatures in all the studied carbon dioxide concentrations.
  1. Caixin L, Lei Z, Jiguang D, Qing M, Hongxing D, Hong H, Journal of Physical Chemistry C., 112, 19248 (2008)
  2. Kadossov E, Burghaus U, Journal of Physical Chemistry C., 112, 7390 (7400)
  3. Voigts F, Bebensee F, Dahle S, Volgmann K, Maus-Friedrichs W, Surface Science., 603, 40 (2009)
  4. Florin NH, Harris AT, Chem. Eng. Sci., 64(2), 187 (2009)
  5. Vivanpatarakij S, Laosiripojana N, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S, Chem. Eng. J., 147(2-3), 336 (2009)
  6. Lu H, Smirniotis PG, Ernst FO, Pratsinis SE, Chem. Eng. Sci., 64(9), 1936 (2009)
  7. Mofarahi M, Roohi P, Farshadpoor F, Chemical Engineering Transactions., 17, 403 (2009)
  8. Inoue R, Ueda S, Wakuta K, Sasaki K, Ariyama T, ISIJ International., 50, 1532 (2010)
  9. Fernandez J, Gonzalez F, Pesquera C, Blanco C, Renedo MJ, Ind. Eng. Chem. Res., 49(6), 2986 (2010)
  10. Huang CH, Chang KP, Yu CT, Chiang PC, Wang CF, Chem. Eng. J., 161(1-2), 129 (2010)
  11. Wang K, Guo X, Zhao PF, Zheng CG, Applied Clay Science., 50, 41 (2010)
  12. Wang Y, Lin SY, Suzuki Y, Fuel Process. Technol., 91(8), 958 (2010)
  13. Stamnore BR, Gilot P, Fuel Process. Technol., 86(16), 1707 (2005)
  14. Fujimoto S, Hanaoka T, Taniguchi H, Kuramoto K, Matsumura Y, Lin SY, Minowa T, J. Chem. Eng. Jpn., 39(11), 1191 (2006)
  15. Lysikov AI, Salanov AN, Okunev AG, Ind. Eng. Chem. Res., 46(13), 4633 (2007)
  16. Wang Y, Lin S, Suzuki Y, Energy Fuels, 21(6), 3317 (2007)
  17. Wang Y, Lin SY, Suzuki Y, Energy Fuels, 22(4), 2326 (2008)
  18. Rajeswara Rao T, Gunn DJ, Bowen JH, Chemical Engineering Research and Design., 67, 38 (1989)
  19. Murthy MS, Marish BR, Rajanandam KS, Kumar KY, Chem. Eng. Sci., 49(13), 2198 (1994)
  20. Szekely J, Evans JW, Chemical Engineering Science., 25, 1091 (1970)
  21. Szekely J, Evans JW, Chemical Engineering Science., 26, 1901 (1971)
  22. Sohn HY, Szekely J, Chemical Engineering Science., 27, 763 (1972)