화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.3, 938-943, May, 2013
Optimization the process variables for the fractionation of Saccharina japonica to enhance glucan content
E-mail:
Saccharina japonica was fractionated by dilute sulfuric acid to increase the glucan content. The optimal fractionation conditions were determined as follows: reaction temperature 141.14 ℃, reaction time 27.85 min and catalyst concentration 0.30%. The CCD model predicted 32.83% glucan content under these conditions. Experiments confirmed the maximum glucan content of 32.67% under the optimal reaction conditions, which was 4.7-fold higher than that of the raw S. japonica (6.95%). With the residual solid, an enzymatic digestibility of 89.38% was obtained using 15 FPU/g-glucan of cellulase enzyme loading, which was 2.6-fold higher than that of the raw S. japonica (34.85%).
  1. An HJ, Wilhelm WE, Searcy SW, Biomass Bioenerg., 35(9), 3763 (2011)
  2. Naik SN, Goud VV, Rout PK, Dalai AK, Renewable & Sustainable Energy Reviews., 14, 578 (2010)
  3. Demirbas MF, Appl. Energy, 88(10), 3473 (2011)
  4. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101(13), 4851 (2010)
  5. Nigam PS, Singh A, Progress in Energy and Combustion Science., 37, 52 (2011)
  6. Singh A, Nigam PS, Murphy JD, Bioresour. Technol., 102(1), 10 (2011)
  7. Goh CS, Lee KT, Renewable & Sustainable Energy Reviews., 14, 842 (2010)
  8. John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102(1), 186 (2011)
  9. Singh A, Olsen SI, Appl. Energy, 88(10), 3548 (2011)
  10. Sarkar N, Ghosh SK, Bannerjee S, Aikat K, Renewable Energy., 37, 19 (2012)
  11. Anastasakis K, Ross AB, Jones JM, Fuel, 90(2), 598 (2011)
  12. Borinesa MG, de Leonb RL, McHenryc MP, Renewable & Sustainable Energy Reviews., 15, 4432 (2011)
  13. Xu D, Gao ZQ, Zhang XW, Qi ZH, Meng CX, Zhuang ZM, Ye NH, Bioresour. Technol., 102(21), 9912 (2011)
  14. Jung KW, Kim DH, Shin HS, Bioresour. Technol., 102(3), 2745 (2011)
  15. Jung KW, Kim DH, Kim HW, Shin HS, International Journal of Hydrogen Energy., 36, 9626 (2011)
  16. Demirbas A, Energy Conv. Manag., 51(12), 2738 (2010)
  17. Lee SM, Lee JH, Bioresour. Technol., 102(10), 5962 (2011)
  18. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
  19. Lee SM, Lee JH, J. Ind. Eng. Chem., 18(1), 16 (2012)
  20. Lee SM, Kim JH, Cho HY, Joo H, Lee JH, J. Korean Ind. Eng. Chem., 20(5), 517 (2009)
  21. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta., 76, 965 (2008)
  22. Selig M, Weiss N, Ji Y, National Renewable Energy Laboratory, NREL/TP-510- 42629 (2008)
  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, National Renewable Energy Laboratory, NREL/TP-510-42618 (2011)
  24. Hames B, Scarlata C, Sluiter A, National Renewable Energy Laboratory, NREL/TP- 510-42625 (2008)
  25. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Laboratory, NREL/TP-510-42619 (2005)
  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Laboratory, NREL/TP-510-42622 (2008)
  27. Lee SM, Lee JH, Appl. Chem. Eng., 23(2), 164 (2012)