화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.3, 405-410, May, 2013
SEBS 공중합체를 이용한 선형 PPS/PET 블렌드의 상용화
Compatibilization of Linear PPS/PET Blends with SEBS Copolymers
E-mail:
초록
스티렌-에틸렌/부틸렌-스티렌(SEBS) 블록공중합체를 이용하여 선형의 폴리페닐렌설파이드(PPS)와 상용 폴리에틸렌테레프탈레이트 블렌드(PET)의 상용화를 하고자 하였다. 머독 혼련 스크류가 장착된 단축 압출기를 통하여 제조한 블렌드를 성형하여 그 특성들을 살펴보았다. 네 개의 각기 다른 PPS/PET 조성에 대하여 블렌드 수지를 제조한 후 열적, 유변학적, 기계적 특성을 측정하고 모폴로지를 관찰하였다. 평가한 결과 비혼화성계로서 심각한 물성저하를 관찰할 수 있었다. 이 중 시장성과 경제성을 고려하여 PPS/PET(40/60)을 기초블렌드 조성으로 선정하고 상용화제로서 SEBS를 첨가하여 제조한 삼원블렌드의 물성을 측정한 결과 기초블렌드의 기계적 물성이 개선되었고 모폴로지 관찰결과 PPS 분산상 크기가 감소함을 보인 바 SEBS가 선형 PPS/PET 블렌드의 상용성을 향상시켰기 때문이라 사료된다.
The effect of styrene-ethylene/butylene-styrene (SEBS) on the blend of polyphenylene sulfide (PPS) and polyethylene terephthalate (PET) was investigated. The blends were extruded by a single screw extruder equipped with a Maddock mixing screw, and their molded properties were examined. After the binary blends were prepared on the whole compositions of PPS/PET (80/20, 60/40, 40/60, 20/80), the thermal, rheological, mechanical properties and morphology of the blends were analyzed. The results showed the significant decline in the properties of the blends owing to the incompatibility between PPS and PET phases. As a basic blend composition, the PPS/PET (40/60) blend was selected by considering cost efficiency. To this basic blend, SEBS was added as a compatibilizer. With increasing SEBS addition, the mechanical properties were improved. From the domain size reduction observed in morphology, it might be due to the enhancement of compatibility between linear PPS and PET phases by addition of SEBS.
  1. Utracki LA, Polymer Alloys and Blends. Thermodynamics and Rheology, Hanser Publishers, Munich, Vienna, New York (1989)
  2. Paul DR, in Polymers Blends, D. R. Paul, and S. Newman, Editors, Academic Press, New York, Vol. II, 35 (1978)
  3. Xanthos M, Polym. Eng. Sci., 28, 1392 (1988)
  4. Lambla M, Yu RX, Lorek S, Coreactive Polymer Alloys, ACS Symp. Ser., 395, 67 (1989)
  5. Saleen M. Baker WE, J. Appl. Polym. Sci., 39, 655 (1990)
  6. Xanthos M, Dagli SS, Polym. Eng. Sci., 31, 929 (1991)
  7. Brown SB, Reactive Extrusion, Principles and Practice, Xanthos M, Editor, Hanser Publishers, 75 (1992)
  8. Liu NC, Baker WE, Adv. Polym. Technol., 11, 249 (1992)
  9. Bonner JG, Hope PS, in Polymer Blends und Alloys, Folkes MJ, Hope PS, Editors, Blackie, Glasgow, UK, 46 (1993)
  10. Perret E, Reifler FA, Hufenus R, Bunk O, Heuberger M, Macromolecules, 46(2), 440 (2013)
  11. Konieczna M, Markiewicz E, Jurga J, Polym. Eng. Sci., 50(8), 1613 (2010)
  12. Shue RS, Scoggins LE, U.S. Patent 4,292,416 (1981)
  13. Froix MF, U.S. Patent 4,276,397 (1981)
  14. Oyama HT, Matsushita M, Furuta M, Polym. J., 43, 991 (2011)
  15. Tang WH, Hu XY, Tang J, Jin RG, J. Appl. Polym. Sci., 106(4), 2648 (2007)
  16. Heino M, Kirjava J, Hietaoja P, Seppala J, J. Appl. Polym. Sci., 65(2), 241 (1997)
  17. Wu S, Polym. Eng. Sci., 27, 335 (1987)