화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.6, 1272-1276, June, 2013
Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions
E-mail:
A kinetic model of mixed immobilized lipase (MIL) and co-immobilized lipase (CIL) systems was investigated by calculating the kinetic parameters based on the reaction mechanisms for lipase-catalyzed transesterification of soybean oil and methyl alcohol. The kinetic parameters were assessed under atmospheric and supercritical fluid conditions. Although the CIL system had a higher initial reaction rate, the effect of substrate inhibition by methanol was higher than that in the MIL system. The initial reaction rate of MIL and CIL decreased under atmospheric conditions as the methanol concentration increased. However, the initial reaction rate of MIL and CIL increased until methanol concentration increased to twice that of oil under the supercritical fluid condition. As a result, the inhibition effect by methanol was identified through a kinetic analysis. A simulated model can be used to predict the optimal conditions for biodiesel production under atmospheric and supercritical conditions.
  1. Chulalaksananukul W, Condoret JS, Delorme P, Willemot RM, FEBS. Lett., 276, 181 (1990)
  2. Bull AT, Korean J. Chem. Eng., 18(2), 137 (2001)
  3. Kwon CH, Shin DY, Lee JH, Kim SW, Kang JW, J.Microbiol. Biotechnol., 17, 1098 (2007)
  4. Zhou GW, Li GZ, Xu J, Sheng Q, Collids Surf., 194, 41 (2001)
  5. Freedman B, Butterfield RO, Pryde EH, J. Am. Oil Chem.Soc., 63, 1375 (1986)
  6. Joelianingsih, Maeda H, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K, Renew. Energy., 33, 1629 (2008)
  7. Fukuda H, Kondo A, Noda H, J. Biosci. Bioeng., 92(5), 405 (2001)
  8. Soumanou MM, Bornscheuer UT, Enzyme Microb. Technol., 33(1), 97 (2003)
  9. Al-Zuhair S, Biotechnol. Prog., 21(5), 1442 (2005)
  10. Park K, Lee S, Maken S, Koh W, Min B, Park J, Korean J. Chem. Eng., 23(4), 601 (2006)
  11. Leedh DH, Kim JM , Shin HY, Kang SW, Kim SW, Biotechnol.Bioprocess Eng., 11, 522 (2006)
  12. Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, Kim SW, Bioresour. Technol., 102(2), 2105 (2011)
  13. Lee JH, Kim SB, Park C, Kim SW, Bioresour. Technol., 101, S66 (2010)
  14. Lee JH, Kwong CH, Kang JW, Park C, Tae B, Kim SW, Appl. Biochem. Biotechnol., 156, 24 (2009)
  15. Lee JH, Lee DH, Lim JS, Um BH, Park C, Kim SW, J. Microbiol. Biotechnol., 18, 1927 (2008)
  16. Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW, Korean J. Chem. Eng., 30(2), 405 (2013)
  17. Zaidi A, Gainer JL, Carta G, Mrani A, Kadiri T, Belarbi Y, Mir A, J. Biotechnol., 93, 209 (2002)
  18. Mukesh D, Jadhav S, Banerji AA, Thakkar K, Bevinakatti HS, J. Chem. Technol. Biotechnol., 69(2), 179 (1997)
  19. Sulaiman AZ, Fan WL, Lim SJ, Proc. Biochem., 42, 951 (2007)
  20. Rosa CD, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV, J. Supercrit. Fluids, 47(1), 49 (2008)
  21. Madras G, Kolluru C, Kumar R, Fuel, 83(14-15), 2029 (2004)
  22. Guo Z, Xu X, Green Chem., 8, 54 (2006)
  23. Habulin M, Knez Z, J. Chem. Technol. Biotechnol., 76(12), 1260 (2001)
  24. Oliveira D, Oliveira JV, J. Supercrit. Fluids, 19(2), 141 (2001)