화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.4, 370-375, April, 2013
Molecular recognition properties of biodegradable photo-crosslinked network based on poly(lactic acid) and poly(ethylene glycol)
E-mail:
Molecular recognition properties of biodegradable photo-crosslinked networks based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were evaluated. A biodegradable crosslinker, diacrylated PLA-PEG-PLA triblock copolymer was synthesized through the ring opening polymerization of D,L-lactide using hydrophilic PEG as a macroinitiator, followed by diacrylation of the end groups for the introduction of the polymerizable vinyl groups. The synthesis of acrylate end-capped macromers was characterized using FTIR and 1H NMR spectroscopic techniques. These macromers were used to prepare biodegradable molecularly imprinted polymers (MIPs) by photopolymerization with methacrylic acid (functional monomer) and theophylline (model template). Various polymers were prepared by changing the ratio of functional monomer to the crosslinking agent and the macromer concentration in order to obtain optimum conditions for MIP synthesis. The theophylline-imprinted polymer demonstrated higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP) and selectivity for theophylline over caffeine (similar structure molecule), suggesting that these polymer networks can potentially be used as biodegradable materials with specific molecular recognition properties.
  1. Wulff G, in Molecularly Imprinted Materials: Science and Technology, Yan M, Ramstrom O, Eds., Marcel Dekker, New York, 2005, pp 59-92.
  2. Yilmaz E, Haupt K, Mosbach K, in Molecularly Imprinted Materials: Science and Technology, Yan M, Ramstrom O, Eds., Marcel Dekker, New York, 2005, pp 25-57.
  3. Yan H, Row KH, Biotechnol. Bioeng., 11, 357 (2006)
  4. Haupt K, Mosbach K, Chem. Rev., 100(7), 2495 (2000)
  5. Hilt JZ, Byrne ME, Adv. Drug Deliv. Rev., 56, 1599 (2002)
  6. Cunliffe D, Kirby A, Alexander C, Adv. Drug Deliv. Rev., 57, 1836 (2005)
  7. Khurshid SS, Schmidt CE, Peppas NA, J. Biomater. Sci.-Polym. Ed., 22, 343 (2011)
  8. Sodergard A, Stolt M, Prog. Polym. Sci, 27, 1123 (2002)
  9. Pritchard CD, O’shea TM, Siegwart DJ, Calo E, Anderson DG, Reynolds FM, Thomas JA, Slotkin JR, Woodard EJ, Langer R, Biomaterials, 32, 587 (2011)
  10. Sawhney AS, Pathak CP, Hubbell JA, Macromolecules, 26, 581 (1993)
  11. Hill-West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA, Obstet. Gynecol., 83, 59 (1994)
  12. Hill-West JL, Chowdhury SM, Slepian MJ, Hubbell JA, Proc. Natl. Acad. Sci. U.S.A., 91, 5967 (1994)
  13. WEST JL, HUBBELL JA, React. Polym., 25(2), 139 (1995)
  14. Lee KS, Kim DS, Kim BS, Biotechnol. Bioeng., 12, 152 (2007)
  15. Oh WG, Kim BS, Macromol. Symp., 249-250, 76 (2007)
  16. Lee HY, Kim BS, Biosens. Bioelectron., 25, 587 (2009)
  17. Kim BS, Hrkach JS, Langer R, Biomaterials, 21, 259 (2000)
  18. Baggiani C, in Molecularly Imprinted Materials: Science and Technology, Yan M, Ramstrom O, Eds., Marcel Dekker, New York, 2005, pp 517-552.
  19. Cormack PAG, Elorza AZ, J. Chromatogr. B, 804, 173 (2004)
  20. Nicolescu TV, Sarbu A, Ghiurea M, Donescu D, U.P.B. Sci. Bull., Series B, 73, 163 (2011)
  21. Reddy PS, Kobayashi T, Abe M, Fujii N, Eur. Polym. J., 38, 521 (2002)
  22. Reddy PS, Kobayashi T, Fujii N, Eur. Polym. J., 38, 779 (2002)