화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.2, 107-118, May, 2013
Long wavelength peristaltic flow in a tubes with an endoscope subjected to magnetic field
E-mail:
In this paper, this study examines problem of peristaltic flow in a tubes with an endoscope subjected to magnetic field. Effect of an endoscope and magnetic field on the peristaltic flow of a Jeffrey fluid through the cylindrical cavity between concentric tubes has been investigated. The analytical expressions for the pressure gradient, velocity, pressure rise, friction force on the inner and outer tubes and shear stress are obtained in the physical domain. Effect of the non-dimensional wave amplitude, the magnetic field, the ratio of relaxation to retardation time, the radius ratio and the non-dimensional volume flow are analyzed theoretically and computed numerically. Comparison were made with the results obtained in the presence and absence of magnetic field and an endoscope. The results indicate that the effect of the non-dimensional wave amplitude, magnetic field, ratio of relaxation to retardation time, radius ratio and non-dimensional volume flow on peristaltic flow are very pronounced.
  1. Abd elmaboud Y, Comm. in Nonlinear Sci. and Numer. Simulat., 17, 685 (2011)
  2. Abd elmaboud Y, Mekheimer KS, Applied Mathematics and Computation., 35, 2695 (2011)
  3. Chia BT, Liao H, Yang Y, Acta Astronautica., 165, 86 (2011)
  4. Hayat T, Noreen S, Comptes Rendus Mecanique., 338, 518 (2010)
  5. Koshel K, Comm. in Nonlinear Sci. and Numer. Simulat., 17, 483 (2011)
  6. Nadeem S, Akbar NS, Comm. Nonlinear Sci. & Numer. Simulat., 15, 3950 (2010)
  7. Nadeem S, Akbar NS, Bibi N, Ashiq S, Comm. Nonlinear Sci. & Numer. Simulat., 15, 2916 (2010)
  8. Nadeem S, Akram S, Nonlinear Analysis: Real World Applications., 11, 4238 (2010)
  9. Nadeem S, Akram S, Comm. Nonlinear Sci.& Numer. Simulat., 15, 1705 (2010)
  10. Pandey SK, Chaube MK, Mathematical and Computer Modelling., 52, 387 (2010)
  11. Pandey SK, Chaube MK, Comm. Nonlinear Sci. & Numer.Simulat., 16, 3591 (2011)
  12. Pandey SK, Chaube MK, Tripathi D, Journal of Theoretical Biology., 278, 11 (2011)
  13. Shapiro AH, Jaffrin MY, Weinberg SL, J.Fluid Mech., 37, 799 (1969)
  14. Shukla JB, Parihar RS, Gupta SP, J. Fluid Mech., 97, 255 (1980)
  15. SIDDIQUI AM, SCHWARZ WH, J. Non-Newton. Fluid Mech., 53, 257 (1994)
  16. Srinivas S, Kothandapani M, Applied Mathematics and Computation., 213, 197 (2009)
  17. Tripathi D, Mathematical Biosciences., 233, 90 (2011)
  18. Tripathi D, Pandey SK, Das S, Applied Mathematics and Computation., 215, 3645 (2010)
  19. Tripathi D, Pandey SK, Das S, Acta Astronautica., 69, 30 (2011)
  20. Vajravelu K, Sreenadh S, Lakshminarayana P, Comm. Nonlinear Sci. & Numer. Simulat., 16, 3107 (2011)
  21. Walker SW, Shelley MJ, Journal of Computational Physics., 229, 1260 (2010)
  22. Wang Y, Ali N, Hayat T, Oberlack M, Applied Mathematical Modelling., 35, 3737 (2011)
  23. YlLdlRlM A, Sezer SA, Mathematical and Computer Modelling., 52, 618 (2010)