화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.5, 493-501, May, 2013
Intermediate state and weak intermolecular interactions of α-trans-1,4-Polyisoprene during the gradual cooling crystallization process investigated by In situ FTIR and two-dimensional infrared correlation spectroscopy
E-mail:
The investigation of the gradual cooling crystallization process of α-trans-1,4-polyisoprene (α-TPI) was carried out for different wavenumber regions by conventional spectral analysis and two-dimensional correlation infrared spectroscopy (2DIR) methods. Interestingly, an intermediate state has been confirmed by the fascinating intensity variation of the 1666 cm?1 band, and the motion of side-chain (CH3 group) seems to be the initial driving force and precondition for forming the ordered 21 helix conformation. It is also found that the occurrence for the splitting of the CH3 group-related bands is consistent with the appearance of the intermediate state, indicating that the interchain interactions between CH3 groups play an important role in controlling the intermediate state and should be the primary driving force for stabilizing the specific 21 helix conformation.
  1. Strobl GR, The Physics of Polymers, Springer-Verlag, Berlin, 1997.
  2. Strobl GR, Eur. Phys. J. E, 3, 165 (2000)
  3. Lotz B, Eur. Phys. J. E, 3, 185 (2000)
  4. Cheng SZD, Li CY, Zhu L, Eur. Phys. J. E, 3, 195 (2000)
  5. Sadler DM, Polymer, 24, 1401 (1983)
  6. Lee JW, Macromol. Res., 20(1), 1 (2012)
  7. Laurizen JI, Hoffmann JD, J. Chem. Phys., 31, 1680 (1959)
  8. Albrecht T, Strobl G, Macromolecules, 29(2), 783 (1996)
  9. Hoffman JD, Miller RL, Polymer, 38(13), 3151 (1997)
  10. Song JS, Huang BC, Yu DS, J. Appl. Polym. Sci., 82(1), 81 (2001)
  11. Takahashi Y, Sato T, Tadokoro H, J. Polym. Sci. B: Polym. Phys., 11, 233 (1973)
  12. Natta G, Corradini P, Porri L, Atti Accad. Naz. Lincei, 20, 728 (1956)
  13. Bunn CW, Proc. R. Soc. Lond. A: Math. Phys. Sci., 6, 497 (1942)
  14. Bunn CW, Proc. R. Soc. Lond. A: Math. Phys. Sci., 180, 40 (1942)
  15. Nikitin VN, Volchek BZ, Appl. Spectrosc., 4, 391 (1966)
  16. Noda I, Appl. Spectrosc., 47, 1329 (1993)
  17. Noda I, Appl. Spectrosc., 54, 994 (2000)
  18. Noda I, Dowrey AE, Marcott C, Story GM, Ozaki Y, Appl. Spectrosc., 54, 236 (2000)
  19. Tran CD, Lacerda SHDP, Oliveira D, Appl. Spectrosc., 57, 152 (2003)
  20. Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 2047 (2000)
  21. Aki SNVK, Brennecke JF, Samanta A, Chem. Commun., 413 (2001)
  22. Widegren JA, Laesecke A, Magee JW, Chem. Commun., 1610 (2005)
  23. Widegren JA, Saurer EM, Marsh KN, Magee JW, J. Chem. Thermodyn., 37(6), 569 (2005)
  24. Binder JL, Ransaw HC, Anal. Chem., 29, 503 (1957)
  25. Kossler I, Vodehnal J, Polym. Lett., 1, 415 (1963)
  26. Binder JL, J. Polym. Sci. A: Polym. Chem., 1, 37 (1963)
  27. Tischler F, Woodward AE, Macromolecules, 19, 1328 (1986)
  28. Xu JR, Woodward AE, Macromolecules, 19, 1114 (1986)
  29. Xu JR, Woodward AE, Macromolecules, 21, 83 (1988)
  30. Gavish M, Brennan P, Woodward AE, Macromolecules, 21, 2075 (1988)
  31. Gavish M, Corrigan J, Woodward AE, Macromolecules, 21, 2079 (1988)
  32. Zhang JM, Tsuji H, Noda I, Ozaki Y, J. Phys. Chem. B, 108(31), 11514 (2004)
  33. Kister G, Cassanas G, Vert M, Polymer, 39(2), 267 (1998)
  34. Zhang JM, Tsuji H, Noda I, Ozaki Y, Macromolecules, 37(17), 6433 (2004)
  35. Nikimin VN, Volchek BZ, Russ. Chem. Rev., 37, 225 (1968)
  36. Lagaron JM, Macromol. Symp., 184, 19 (2002)
  37. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P, Macromolecules, 23, 634 (1990)
  38. Shi JY, Wu PY, Li L, Liu T, Zhao L, Polymer, 50(23), 5598 (2009)