Applied Biochemistry and Biotechnology, Vol.169, No.4, 1449-1458, 2013
Biological N Removal from Wastes Generated from Amine-Based CO2 Capture: Case Monoethanolamine
Large-scale amine-based CO2 capture will generate waste containing large amounts of ammonia, in addition to contaminants such as the actual amine as well as degradation products thereof. Monoethanolamine (MEA) has been a dominant amine applied so far in this context. This study reveals how biological N removal can be achieved even in systems heavily contaminated by MEA in post- as well as pre-denitrification treatment systems, elucidating the rate-limiting factors of nitrification as well as aerobic and denitrifying biodegradation of MEA. The hydrolysis of MEA to ammonia readily occurred both in post- and pre-denitrification treatment systems with a hydraulic retention time of 7 h. MEA removal was a parts per thousand yen99 +/- 1 % and total nitrogen removal 77 +/- 10 % in both treatment systems. This study clearly demonstrates the advantage of pre-denitrification over post-denitrification for achieving biological nitrogen removal from MEA-contaminated effluents. Besides the removal of MEA, the removal efficiency of total nitrogen as well as organic matter was high without additional carbon source supplied.